1 Introduction

1.1 General properties of ellipsis

The characterizing feature of ellipsis is that elements of semantic content are obtained in the absence of any corresponding syntactic form. The syntax thus appears to be incomplete. More specifically, the implicit semantic content is recovered from elements of the linguistic and non-linguistic context. In this sense, ellipsis is similar to anaphora, except that there is no overt anaphoric element involved. The elements present in an elliptical clause are predicates, arguments or adjuncts of what is omitted. It is the presence of these elements that makes it possible to recognize the ellipsis.

It is in principle always possible to reanalyse any elliptical phenomenon as a case of anaphora, either by hypothesizing an unpronounced pro-form in the elliptical site (zero-anaphora) or by considering the licenser to be anaphoric (e.g., considering the pre-elliptical auxiliary to be an anaphor in Verb Phrase ellipsis (VPE), cf., Schachter 1978;
Hardt 1993). It is an interesting point about the structure of the present handbook that there is no chapter on unrealized subjects of finite verbs, often treated in terms of ‘pro’, i.e., zero-anaphora, in mainstream generative grammar. There is no a priori reason not to treat these simply as cases of ellipsis, just as there is no a priori reason not to analyze VPE as a case of anaphora. Decisions on these questions can only be made on the basis of further theoretical considerations.

As is the case for overt anaphors, ellipsis can be anaphoric or exophoric. Resolution of ellipsis thus requires a theory of context, and specifically a theory of how both non-linguistic and non-semantic material—information about the phonetic, phonological, and morpho–syntactic realization of utterances—gets incorporated into context. More generally, ellipsis resolution requires a theory of conversation if one is to go beyond isolated examples and monologue. We will explain below how Head-Driven Phrase Structure Grammar (HPSG) allows one to account for context and for conversation. On the other hand, most mainstream generative approaches fail to take these phenomena into account in sufficient depth.

HPSG typically takes the view that there is no single mechanism underlying ‘ellipsis’. Rather, the term covers a variety of cases involving contextually based resolution. Three central cases can be distinguished. The first two of these involve constructional analyses of ellipsis (see section 2.1), the third involves non-canonical correspondence between the phonology of a phrase and its daughters, and is much more restricted and limited in its scope (see section 2.2).

Case 1: Non-sentential utterances (NSUs) e.g., Bare Argument Ellipsis and Sluicing (see sections 2.1.2 and 7.4), which acquisition data shows are acquired over a span of years (see e.g., Ginzburg and Kolliakou 2009). These are analyzed as specific constructions typically characterized by the fact that a phrase is taken to be the only constituent of a clausal structure.

Case 2: Argument or predicate ellipsis e.g., null subjects and null objects, VPE, null-complement anaphora, etc. (see sections 2.1.1 and 6). These are again analyzed in terms of specific elliptical constructions, typically involving a non-canonical correspondence between argument-structure (ARG-ST) and syntactic subcategorization (SPR and COMPS lists), so that arguments that are semantically present can be syntactically absent. Thus, in
these two cases, there is no unpronounced syntactic structure.

Case 3: Constructions involving unpronounced syntactic structure e.g., certain varieties of left- or right-peripheral ellipsis, in particular Right Node Raising. These are analyzed by having the PHON (phonology) feature of the mother not simply be a concatenation of the PHON features of all of its daughters, as is normally the case. The latter analysis is rather similar in spirit to various mainstream analyses involving unpronounced syntactic structure, especially to analyses involving PF-deletion. However, HPSG studies have argued that this type of analysis is only applicable in a very limited number of cases characterized by specific properties, as discussed in section 2.2.

In the following subsection, we will present HPSG in general and in section 2, we will present an overview of the analyses of elliptical phenomena in HPSG.

1.2 Head-Driven Phrase Structure Grammar

Head-Driven Phrase Structure Grammar (HPSG) is a constraint-based linguistic theory initially proposed by Pollard and Sag (1987) and further developed in Pollard and Sag (1994) and numerous other papers. It is impossible to provide a detailed description of HPSG within the scope of this paper.\(^1\) We will limit ourselves to sketching the essential elements of the framework that are crucial to understanding its approach to ellipsis.

In HPSG, linguistic objects are modeled in terms of typed feature-value matrices. The value of a feature can be complex and even recursive. A language consists of a set of *signs*. These are abstract entities that are the locus of constraints on the interface between form, meaning and use. A grammar is a system of constraints that conjointly define the signs of a given language.\(^2\) The theory uses types, organized in inheritance hierarchies, making it

1. See (Müller 2015b; Sag 2012) for recent synopses and (Sag et al. 2003) for a pedagogical introduction. For further references, see the HPSG bibliography, maintained by Stefan Müller: http://hpsg.fu-berlin.de/HPSG-Bib/.

2. The version of HPSG formalized in TTR (Type Theory with Records, cf. Ginzburg 2012; Cooper 2012), presented in section 7 refines this view. It takes a dialogue-oriented view of grammar in which a grammar provides types that characterize speech events (for detailed discussion, see Ginzburg and Poesio 2016.). Thus, it proposes a linguistic ontology that includes both tokens (speech events, modeled as *records*) and types that characterize such tokens (signs, modeled as *record types*). This view of grammatical tokens and types plays an important role in our account of conversational interaction, and is key to understanding various elliptical resolution processes, as discussed in section 7.
possible to express generalizations of varying granularity across linguistic levels. Because signs combine information about all levels of representation (phonology, morphology, syntax, semantics, pragmatics, discourse and usage), HPSG is crucially non-modular. Constraints involving various levels can be easily stated. We will see that this is a powerful property of the framework for the analysis of ellipsis, as it allows one to express simultaneous semantic and syntactic constraints on ellipsis (explaining for instance the connectivity effects among non-sentential utterances) and provides means to integrate non-semantic information—information about the realization of utterances—into context. Thus, HPSG allows one to avoid two tendencies that are dominant in the literature:

- ignoring linguistic complexity, as in logically-based models which abstract away from a linguistic level.
- ignoring contextual complexity, as in generative accounts that abstract away from dialogue context.

As we will see in more detail below, HPSG initiated the constructional approach to ellipsis resolution, making central use of the notion of Question Under Discussion (QUD), cf. (Ginzburg and Sag 2000 (henceforth GS00)).

Furthermore, HPSG aims to be psycholinguistically plausible, specifically by providing a theory that is compatible with incremental processing. Finally, work in HPSG typically aims at strong empirical grounding, based on corpus research, field work, acceptability experiments etc. As in the Simpler Syntax framework (see chapter 7 of this volume), no distinction is made between core and periphery. Specifically, it is unclear that phenomena relegated to the 'periphery' are less complex than 'core' phenomena, so that nothing is gained by the distinction in explaining acquisition: learning the periphery raises the same problems as learning the core. The ambition is to provide a large-scale description for a broad range of empirical data that is concise, formally precise (and thus falsifiable), and insightful.

3 Sag et al. (2012) and Sag (2012) propose an integration between Berkeley-style Construction Grammar and HPSG under the name of Sign-Based Construction Grammar (SBCG). Under this view, constructions (including lexical constructions) are understood to be constraints on classes of signs and their components, which are organized into lattice-like arrays of types and subtypes.

4 In fact, recent work on phenomena such as self-repair and exclamative interjections (e.g., Ginzburg et al. 2014b, 2017), following earlier work in Dynamic Syntax (e.g., Purver et al. 2006 and chapter 9 of this volume), takes a stronger line, namely that the grammar needs to be stated incrementally. See section 7.4.5 for brief discussion.
In the following section, we will introduce the two central types of analyses used to characterize ellipsis in HPSG, namely (i) constructional analyses (section 2.1), and (ii) non-canonical correspondence between the phonology of a phrase and its daughters (section 2.2). We conclude with some discussion of corpus studies of elliptical phenomena (section 2.3).

2 An overview of ellipsis in HPSG

Our purpose in this section is to provide an overview of the types of analyses of elliptical phenomena that have been proposed in the HPSG literature. We attempt to convey the central insights behind the analyses, providing only the minimal formal details necessary so that readers unfamiliar with the framework can grasp the central intuitions and thus understand the three following sections which develop the HPSG positions on (i) the structure of the ellipsis site (section 3); (ii) recoverability (section 4); (iii) licensing (section 5). In section 6, we will provide a more technically precise account of the syntax of argument ellipsis, an area for which there has been a considerable amount of work in HPSG and for which there is a broad consensus on the analysis. Finally, in section 7, we will introduce more recent developments and provide a detailed analysis of non-sentential utterances. In particular, we will introduce an alternative version of HPSG, one which allows the grammar to directly interface with dialogue context as conceived in the framework of KoS (Ginzburg 2012). As for the cases of constructions with unpronounced syntactic structure, for reasons of space, we will not be able to go into more detail than the brief introduction provided in section 2.2.

2.1 Constructional analyses of ellipsis

In this section we will introduce two central types of constructional analyses of ellipsis, namely cases where there is a non-canonical correspondence between Argument-Structure and Valence and cases of non-sentential utterances.\[5\]

\[5\] KoS—a toponym, not an acronym—is a framework for describing dialogue interaction, which we will introduce in section 7.

\[6\] A further case of constructional ellipsis, namely nominal ellipsis, has not been discussed in this paper for reasons of space. See e.g. (Nerbonne et al. 1989, 1990; Nerbonne and Mullen 2000) for HPSG analyses using a null head and (Branco and Costa 2006; Arnold and Spencer 2015) for analyses avoiding an empty morpheme.
2.1.1 Non-canonical correspondence between Argument-Structure and Valence

The feature structures describing lexical items in HPSG contain a feature called ARG-ST (Argument-Structure), whose value is a list of feature structures describing the syntactic and semantic properties of the items they subcategorize for. Canonically, the ARG-ST list is the concatenation of the values of the two valence features, SPR (Specifier) and COMPS (Complements), which respectively govern the combination of the lexical item with its specifier and complements. (1) provides some typical examples of ARG-ST, SPR and COMPS values.

(1)

<table>
<thead>
<tr>
<th>Lexical item</th>
<th>ARG-ST</th>
<th>SPR</th>
<th>COMPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>laugh</td>
<td>⟨NP[nom]⟩</td>
<td>⟨NP[nom]⟩</td>
<td>⟨⟩</td>
</tr>
<tr>
<td>see</td>
<td>⟨NP[nom], NP[acc]⟩</td>
<td>⟨NP[nom]⟩</td>
<td>⟨NP[acc]⟩</td>
</tr>
<tr>
<td>speak</td>
<td>⟨NP[nom], PP[TO]⟩</td>
<td>⟨NP[nom]⟩</td>
<td>⟨PP[TO]⟩</td>
</tr>
<tr>
<td>will</td>
<td>⟨NP[nom], VP[base]⟩</td>
<td>⟨NP[nom]⟩</td>
<td>⟨VP[base]⟩</td>
</tr>
<tr>
<td>try</td>
<td>⟨NP[nom], VP[TO]⟩</td>
<td>⟨NP[nom]⟩</td>
<td>⟨VP[TO]⟩</td>
</tr>
</tbody>
</table>

The ARGUMENT REALIZATION PRINCIPLE (ARP, see (41) below for a more precise formulation) states that, canonically, the value of ARG-ST for a given lexical item is the concatenation of the values of the SPR and COMPS features, as illustrated in (1).

Given this set up, we can provide an analysis of the ellipsis of complements or specifiers simply by allowing non-canonical constructions in which items mentioned in the ARG-ST do not appear in the valence features (such constructions are non-canonical in the sense that they do not respect the general formulation of the ARP). For instance, we can account for Verb Phrase Ellipsis by a constraint allowing auxiliaries to have alternate non-canonical lexical entries where their VP argument is specified as pronominal in the ARG-ST list and there is no corresponding VP in the COMPS list (for details, see (39-a), (39-b) below). This means that the VP meaning will be recovered anaphorically or exophorically from the context, ensuring appropriate semantic interpretation (see e.g., Schachter 1978; Hardt 1993; Kim 2006), but will not be realized in the syntax, since it is not present on the COMPS list. Thus, a sentence like Kim will. receives a very simple constituent structure where the VP has only a single daughter,

7We use the traditional name, rather than the more appropriate ‘Post-Auxiliary Ellipsis’ suggested by Sag (1976), p. 53: what is ellipted is not always a (surface) VP (in particular, it can be any predicative complement of the copula be), and it doesn’t even have to be a surface constituent. Furthermore, in examples of NCA like (2-a) below, a VP is ellipted, but the usual criteria show that this is not VPE, see (Miller and Pullum 2014, p.6). Note also that we are using ‘auxiliary’ in the classical sense in English linguistics, namely a verb that has the NICE properties (cf., Huddleston 1976), so that copular be and some uses of main verb have are included.
the V[AUX] *will* (see (40) below).

We can provide an analysis for Null Complement Anaphora (NCA), illustrated in (2-a), along the same lines. However, it is well-known that NCA differs from VPE in that there is apparently no independently motivated subclass of verbs to which it is applicable (as shown by the classical contrast between (2-a) and (2-b)). Thus, specific idiosyncratic lexical constraints will be required for verbs like *try* which allow NCA, as opposed to the general constraint which applies in the case of English auxiliaries for VPE.

(2)
 a. Kim could not open the door so Pat tried.
 b. *Kim could not open the door so Pat attempted.

This type of analysis can also be used for languages that allow null pronominal subjects and/or objects (sometimes called ‘pro-drop’, see e.g., Manning and Sag 1999; Melnik 2007). In cases where they are systematically available, e.g., null objects in Brazilian Portuguese and null subjects in Spanish, a general constraint is required, similar to that suggested for English auxiliaries. Null objects, as in the Braxilian Portuguese example (3), will be treated by having a pronominal NP (rather than a VP as in English VPE) as the second item of the ARG-ST list, with no corresponding item on the COMPS list. Null subjects, as in the Spanish example (4), are similar except that they require a pronominal NP as first item of the ARG-ST list with no corresponding item on the SPR list. This leads to constituent structures where the VP contains only the verb and the prepositional object, as in (3), or the S contains only a VP daughter, as illustrated in (4). Thus the constituent structures for these sentences contain no unpronounced positions in the syntax (see section 6.2 below for further detail).

(3) Maria escolheu o livro e [_{s[_{l NP Ana]} [_{vP v colocou} [_{pP p na} [_{sp estante} Tn}}]].
 María chose the book and Ana put in bookcase.
 ‘María chose the book and Ana put it in the bookcase.’

(4) Maria llegó. [_{s [_{vP v Estaba} [_{aP cansada} Tn}}]].
 María arrived. Was tired.
 ‘María arrived. She was tired.’

In certain languages, null subjects and objects are subject to various restrictions, requiring
complexification of the relevant constraints (see e.g. (Melnik 2007) for a discussion of null subjects in Hebrew).

In all of these cases the resolution of the ellipsis reduces to the resolution of the anaphoric element on the ARG-ST list. We will provide further detail of how this works for VPE in section 6.2.

2.1.2 Non-sentential utterances: Sluicing, Short Answers and Gapping

In this section we will briefly introduce the analyses of non-sentential utterances (NSUs), more specifically SLUICING and SHORT ANSWERS, which have been proposed in HPSG (see in particular Ginzburg and Sag 2000, chapter 8, Ginzburg 2012). We will also briefly present the analysis of GAPPING proposed by Abeillé et al. (2014), in which the gapped clause is treated as a cluster of NSUs.

Both sluicing and short answers involve XP ‘fragments’ which receive a ‘sentential’ interpretation (e.g., as propositions and questions). Following Ginzburg and Sag (2000), we will analyze these as specific sentential constructions where the verbal projection is reduced to a single phrase. Despite their sentential semantics, treating NSUs as sentences in the sense of verbal projections may not be the best analysis in all cases. For certain cases, e.g., sluices, it clearly is, since it is well-known that they have a sentence-type distribution, rather than an NP or PP distribution (see e.g., Merchant 2001, section 2.1 and Culicover and Jackendoff 2005, pp.268-70). However, for other cases, there is cross-linguistic variation in this respect. For instance oui (‘yes’), non (‘no’), si (‘yes’) can be embedded under the complementizer que in French (Je crois que oui/non/si. ‘I think that yes/no/yes.’), whereas this is much more difficult in English. Similarly, NP short answers can be embedded in the Brazilian Portuguese example in 2.1.2. This is clearly much less natural in English, as shown by the glosses.8

(5) A: Quem foi pra festa? B: Acho que o João.
A: Who went to the party? B: I think that João.
‘A: Who went to the party? B: I think that João.’

8Ginzburg and Sag (2000) use the feature ±IC to distinguish embeddable from non-embeddable clauses (as in e.g. (55) and (56) below). See (van Craenenbroeck and Lipták 2006, section 6.3) and (Temmerman 2013) for proposals as to which languages do and do not allow such embedded NSUs.
As will be discussed in more detail in sections 3.1 and 7, the form and interpretation of these NSUs is determined by elements of the previous context.

Gapping, illustrated in (6-a) below, has received much attention in the literature on ellipsis (see also chapter 23 of this volume). Many analyses, following Ross (1967), invoke some form of a deletion process, which, in more recent minimalist versions, is sometimes fed by movement of the remnants to the left periphery (see among others (Sag 1976; Hartmann 2009; Merchant 2004), as well as (Chaves 2009) within an HPSG framework). Other studies have proposed a specific construction mapping a headless structure into a propositional meaning, accounting, among other properties, for the fact that the order of remnants in the gapped clause does not necessarily parallel that of their correlates in the antecedent clause, as illustrated in (6-b) (see among others Sag et al. (1985); Steedman (1990); Gardent (1991); Culicover and Jackendoff (2005); Mouret (2007); Bilbiie (2011)). Following this tradition, Abeillé et al. (2014) provide a series of further arguments against deletion-based analyses (based on French and Romanian data) and propose a construction-based approach set in an HPSG framework. Specifically, they show that syntactic parallelism is less strict than what is usually assumed: each remnant in gapping is required to match some subcategorization frame of the verbal predicate its correlate depends on. This is illustrated for Romanian in (6-c) (Abeillé et al. (2014), p.251, (33b)), where the second remnant, tuturor copiilor, is a dative NP whereas its correlate in the antecedent, la trei dintre copii, is a PP. On the other hand, discourse parallelism is required. The gapped clause is analyzed as a cluster of major fragments.9

(6) a. A policeman walked in at 11, and a fireman, at 12.
 b. A policeman walked in at 11, and at 12, a fireman. (Sag et al. (1985), (106))
 c. Ion oferă mere [la trei dintre copii], iar Maria [tuturor copiilor]. [Ru]
 Ion gives apples to three of children, and Maria all.DAT children.DEF.DAT
 ‘Ion gives apples to three of the children, and Maria to all of them.’

9For reasons of space, we have not dealt with coordinate ellipsis in this paper, beyond what little is said here about the specific case of gapping. Among the HPSG works on the topic are: (Sag et al. 1985; Beavers and Sag 2004; Mouret 2006, 2007; Chaves 2007; Yatabe 2012).
2.2 Non-canonical correspondence between the phonology of a phrase and its daughters

Right Node Raising (RNR), also known as Right-Peripheral Ellipsis has been the subject of numerous studies (see e.g., Hartmann 2009; Culicover and Jackendoff 2005; Johnson 2009). Within the HPSG literature, Yatabe (2003); Chaves (2008); Crysmann (2008); Beavers and Sag (2004); Chaves (2014); Abeillé et al. (2015) have insisted that it has radically different properties from the constructions discussed in sections 2.1.1 and 2.1.2 above, which warrant a different type of analysis.

For reasons of space, we will not be able to discuss the HPSG analyses of RNR beyond the brief (and somewhat terse) summary given here of the most recent developments. Specifically, Chaves (2014) has argued that many of the complexities in the vast literature on RNR can be eliminated if it is recognized that many cases of apparent RNR also have analyses either as cataphoric VPE or N’-ellipsis or as ATB Extraposition. If one restricts oneself to cases which are unambiguously RNR, it appears that RNR “(i) can target any peripheral string of words that can form an independent prosodic unit, and (ii) imposes morphological form identity.” (Chaves (2014):864).

Chaves furthermore argues that certain cases of RNR cast doubt on the possibility of maintaining classical accounts of RNR, in which the RNRAised string undergoes movement.

(7) a. Robin does NOT PLAY—or PRETENDS not to play—[with a full deck]. (cf. *It is with a full deck that Robin does not play _.)
b. Do you primarily work with ORTHO- or with PERIO\[dontists\]? (cf. *Dontists, I don’t think I could work with ortho-.)
c. It is possible that someone with a GOOD—and assumed that someone with an EXCELLENT—[set of golf irons][would make this hole in one]. (Chaves (2014):866-7, (94), (95b), (97a))

In (7-a) the putatively RNRAised string is an idiom chunk; in (7-b) it is a word-part; in (7-c) it

10 Morphological form identity, cf., (Booij 1985), imposes identity beyond phonological identity, in particular the same morphemes must be used with the same senses.
11 Chaves uses small caps to signal contrastive focus, with an L+H* tone, and square brackets to identify the RNRAised string.
is very difficult to argue that it could be a constituent. In all three cases, there is no reason to believe that the RNRAised string is a syntactically movable entity (as shown by the ill-formedness of the variants in parentheses).

In order to account for these properties, Chaves proposes an analysis which might be considered to be close in spirit to PF-deletion. In general, in HPSG, when signs are combined, the phonology of the mother is assumed to be the concatenation of the phonology of its daughters. The construction for RNR, on the other hand, is exceptional in that it allows one to transfer only the phonology of the second of two sequences of morphophonological constituents that are identical up to morphological forms. For technical details, see (Chaves 2014), especially pp. 874ff.

The following properties characterize elliptical phenomena that must be analyzed in this way: (i) they require strict syntactic identity;\(^\text{12}\) (ii) they are strictly intrasentential; (iii) they are never exophoric.

\(^{12}\)Abeillé et al. (2015) report corpus data, among which (8) and (9) below, and the results of acceptability experiments on RNR in French. These provide evidence that there can be minor mismatches in content-less material (e.g. determiners and prepositions). Note that in (8) it would be ungrammatical to replace des by de in what corresponds to the ellipted segment so that there is not strict identity. Similarly, in (9), parvient requires the preposition à.

(8) C’est de la responsabilité de l’Église de venir en aide aux migrants et aux réfugiés qu’ils aient des papiers ou qu’ils n’aient pas de papiers.

It’s of the responsibility of the-church of coming in aid to migrants and to refugees that have indef-pl papers or that-they haven’t not indef-sg papers.

‘It is the responsibility of the Church to help migrants and refugees whether they have or they don’t have papers.’

(9) Ce parti ne parvient pas à surmonter ses contradictions, voire ne souhaite pas, surmonter ses contradictions.

This party neg manage not to overcome its contradictions, indeed neg wish not overcome its contradictions.

‘This party can’t manage, or even doesn’t want, to overcome its contradictions.’

They consequently suggest an analysis which allows content-less material to be asymmetrically ellipted on the left, whereas content-full peripheral material must be shared on the right. Bilbíe (2013) reports similar examples in English found in the Penn Tree Bank, e.g. They were also as liberal or more liberal than any other age group in the 1986 through 1989 surveys (WSJ). Experimental work is required to decide whether these English examples have a similar status to that of the French examples above, or whether they should be considered as errors.
2.3 Elliptical phenomena: evidence from corpora

Corpus studies are important since they provide a “lower bound” for what the grammar needs to characterize; due to sparsity issues, admittedly, some rare phenomena (or at least rare in the settings sampled by a given corpus) might be missed. Hence, corpus-based generalizations need to be made on the basis of corpora with a wide range of genres and it is important to combine this source of data gathering with an experimental program. In this section, we review some studies that form an important backdrop to the HPSG/KoS work described below. We begin with a presentation of the corpus-based classification of clarification requests developed by Purver et al. (2001), because it provides an example of how the extensive discussions of certain elliptical constructions in the literature (in particular Sluicing and Bare Argument Ellipsis) have ignored important aspects of the relevant range of data, which are brought to light by corpus investigation. We will then mention more briefly other corpus-based work on ellipsis in HPSG. Successful coverage of the empirical phenomena presented in these papers, we believe, constitutes a significant test of adequacy for any theory of ellipsis.

Purver et al. (2001) propose a classification of the range of form/contents of clarification requests (CRs) in the British National Corpus (BNC). These can take many forms, as illustrated in Table 1, all but the first three being elliptical. The examples in this table are to be understood as clarification requests in a discourse context where A has just uttered ‘Did Bo leave?’ (except for the last case, Filler, where A utters the incomplete utterance ‘Did Bo ...

<table>
<thead>
<tr>
<th>Category name of CR:</th>
<th>Example of CR:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explicit</td>
<td>B: Did you say ‘Bo’? / What do you mean ‘leave’?</td>
</tr>
<tr>
<td>Literal reprise</td>
<td>B: Did BO leave? / Did Bo LEAVE?</td>
</tr>
<tr>
<td>Wh-substituted Reprise</td>
<td>B: Did WHO leave? / Did Bo WHAT?</td>
</tr>
<tr>
<td>Wot</td>
<td>B: Eh? / What? / Pardon?</td>
</tr>
<tr>
<td>Reprise Sluices</td>
<td>B: Who? / What? / When?</td>
</tr>
<tr>
<td>Reprise Fragments</td>
<td>B: Bo? / Leave?</td>
</tr>
<tr>
<td>Gap</td>
<td>B: Did Bo ...?</td>
</tr>
<tr>
<td>Filler</td>
<td>A: Did Bo ... B: Win?</td>
</tr>
</tbody>
</table>

Table 1: A taxonomy for clarification requests, Table I from Purver, 2006.

13 ‘What?’ is multiply ambiguous. It can be used to signal that the previous utterance was not understood overall (it is then classified using the tag Wot); it can also be used to clarify the inanimate filler of an argument role (one that is implicit in the case of ‘Did Bo leave?’ and makes sense only on certain senses of ‘leave’; it is then classified using the tag Reprise Sluice).
Providing explicit formal analyses of just about any of these classes is a formidable challenge for any approach where ellipsis resolution is not embedded within a theory of dialogical interaction; for detailed discussion see Ginzburg and Cooper (2004); Ginzburg (2012), who argue that neither deletion-type accounts, nor higher-order unification-type accounts can deliver the requisite readings. Indeed, to date, we are not aware of analyses of these phenomena in existing formal grammatical frameworks apart from HPSG. We highlight just several of the most significant issues.

The first point to note is that a number of these forms are ones whose sole analysis is as clarification requests—this applies to the classes Wh-substituted Reprise and to Gap. These constitute instances of forms whose meanings cannot be analyzed in interaction-free grammar.

A second point relates to cross-turn parallelism. Ginzburg and Cooper (2004); Ginzburg (2012) argue in detail that reprise fragments have two main classes of uses, one to request confirmation about the content of a previous sub-utterance; the other to find out about the intended content of a previous sub-utterance. Both uses have strong parallelism requirements, which require semantic and structural information to be projected across multiple turns into context. Thus, the former requires identity of morphosyntactic category between source and target, as illustrated in (10-a) and (10-b); the latter requires segmental identity between source and target, as exemplified in (10-c). Parallelism of the latter kind seems needed also for the Gap class of CRs:

\[(10)\]
\[
\text{a. A: Did she hit him? B: #He? / Him?}
\]
\[
\text{b. A: Was she biking? B: Biking? / Cycling? / #Biked?}
\]
\[
\text{c. A: Did Bo leave? B: Bo? [Intended content reading: Who are you referring to? or Who do you mean?] Alternative reprise: B: Max? [Lacks intended content reading; can only mean: Are you referring to Max?]}
\]

More generally, Fernández and Ginzburg (2002); Schlangen (2003) characterize the range of NSU types in the BNC, showing that they can be reliably classified into a small number of categories, revolving around the commonality in semantic resolution process.14 Subsequently, Fernández et al. (2007) develop a machine-learning based algorithm for this classification which achieves F-scores of approx 85%.
detailed semantic and syntactic accounts of these classes have been developed in (Schlangen 2003; Fernández 2006; Ginzburg 2012), some of which we sketch in section 7. These classifications have been extended cross-linguistically, with minor modifications (French (Guida 2013), Chinese (Wong and Ginzburg 2013), Spanish (Marchena 2015) and to other genres (see e.g., Filtopoulos 2015).

Focusing on one subclass of NSUs, which has attracted much attention, namely sluicing, the large generative literature on the topic (see e.g. Ross 1969; Chung et al. 1995; Merchant 2001 and many chapters in this volume), has, with very few exceptions, ignored the fact that bare \textit{wh}-phrases are systematically ambiguous and concentrated almost exclusively on what Ginzburg and Sag (2000) dubbed \textit{direct} uses of sluicing. Fernández et al. (2007) propose the existence of a four way ambiguity, an ambiguity they demonstrate to be reliably coded by human subjects:

- **Direct** The utterer of the sluice understands the antecedent of the sluice without difficulty. The sluice queries for additional information that was explicitly or implicitly quantified away in the previous utterance.15

\begin{enumerate}
\item (11) a. A: Can I have some toast please?
 B: Which sort? [BNC, KCH, 104-105]

\item b. Caroline: I’m leaving this school.
 Lyne: When? [BNC, KP3, 538]
\end{enumerate}

- **Reprise** The utterer of the sluice cannot understand some aspect of the previous utterance which the previous speaker assumed as presupposed:

\begin{enumerate}
\item (12) a. Geoffrey: What a useless fairy he was.
 Susan: Who? [BNC, KCT, 1753]

\item b. Pat: You might find something in there actually.
 Carole: Where? [BNC, KBH, 1817]
\end{enumerate}

15In other words, further elaboration of the referents associated with a previously occurring quantifier NP or with elements which license such a content via inference (e.g., ‘Bo ate.’ implies ‘There is something Bo ate.’ and ‘There is a time t such that Bo ate at t.’).
• **Repetition** The sluice is used to ask for repetition of the previous utterance as a whole.

(13) June: Only wanted a couple weeks.
Ada: What?
June: Only wanted a couple weeks. [BNC, KB1, 3312]

• **Wh-anaphor** The utterer of the sluice cedes the turn to the previous speaker, who has indicated his wish to answer a (possibly embedded) *wh*-question s/he has just uttered:

(14) A: We’re gonna find poison apple and I know where that one is.
B: Where? [BNC, KD1, 2370-2371]

‘Repetition what’ can be produced after any utterance, regardless of its content and is indeed the highest frequency type of sluice in the BNC; *wh*-anaphor uses are significantly more selective and complex in that they both presuppose that the previous utterance embeds a question and involve phonological parallelism between the fragment and the *wh*-phrase in the prior utterance. We discuss direct and reprise sluicing below, whereas the other two classes are analysed in (Ginzburg 2012).

Beyond the cases of clarification requests and NSUs just discussed, other work in HPSG has been based on detailed corpus investigations, e.g. (Bîlbîie 2011) on gapping in Romanian and French, (Abeillé et al. 2014) on gapping in Romance, (Abeillé et al. 2015) on peripheral ellipsis in French, (Miller and Pullum 2014) on exophoric VPE, (Miller 2014) on pseudogapping.16

3 The structure of the ellipsis site

Overall, the default assumption in HPSG is that there are no empty morphemes or unpronounced syntactic structures. This is a consequence of a general principle of economy (Occam’s razor, cf. Miller 1997). See (Arnold and Spencer 2015) for recent explicit

16(Nielsen 2005; Bos and Spenader 2011) on VPE and (Beecher 2008) on sluicing also show how corpus studies allow one to bring to light new theoretically important phenomena. Though these studies are not set in an HPSG framework, their assumptions are largely compatible.
argumentation against empty morphemes and (Müller 2015a, pp.553-572) for extensive discussion of HPSG analyses and a comparison with other grammatical frameworks. For elliptical constructions this means that, in the absence of strong evidence to the contrary position, there should be no syntactic structure at the ellipsis site, as mentioned above for argument ellipsis and NSUs in section 2.1. Similarly in long-distance filler-gap constructions, it is assumed that there is no empty syntactic node at the foot of the construction (i.e. there is no “trace”, cf. Sag and Fodor 1994). On the other hand, HPSG does not make the assumption that all forms of ellipsis should necessarily be treated by a single formal mechanism, so that unpronounced structure can be assumed if warranted in a given case, as was argued for RNR in section 2.2.

With respect to unpronounced syntactic structure, HPSG is in clear disagreement with much mainstream generative syntax. Numerous publications have argued in detail that such unpronounced structure is necessary to provide a motivated explanation for various constraints on ellipsis. It is thus important in the context of this chapter to review the central types of evidence that have been brought to bear on this question and to present the counterarguments that have been advanced on the HPSG side (in line with numerous other studies, see e.g. chapters 5, 7, 8, 9 of this volume). We will discuss connectivity, locality effects, and the accessibility of missing referents in turn.

3.1 Connectivity effects

Since Ross’ and Morgan’s seminal papers on sluicing and short answers (Ross 1969; Morgan 1973) it has been known that fragment answers and sluices exhibit connectivity effects, i.e., fragments typically appear in the form that would be theirs in the corresponding understood full clause. Various types of connectivity can be distinguished. In languages with morphological case, NP fragments typically appear in the case that would be theirs in the corresponding understood complete sentence, as in the classical examples (15) from (Ross 1969). Similarly,
PP fragments appear with the preposition that they would have, as in (16).

(15)

a. Er will jemandem schmeicheln, aber sie wissen nicht wem/#wen.
He wants someone.DAT to flatter, but they know not who.DAT/#who.ACC
‘He wants to flatter someone, but they don’t know whom.’
b. Er will jemandem loben, aber sie wissen nicht wen/#wem.
He wants someone.ACC to praise, but they know not who.ACC/#who.DAT
‘He wants to praise someone, but they don’t know whom.’

(16) a. I gave it away. I do not know to whom. (COCA) [cf., #with whom.]
b. He seemed to be competing with someone, though we never knew with whom.
(COCA) [cf., #to whom]

Along the same lines, the form of pronoun fragments is frequently the one you would find in the corresponding complete sentence and thus appears to be explained by the usual application of the binding theory:

(17) Who did Pat see in the mirror? Herself/#Her. [cf. Pat saw herself/#her in the mirror.]

The apparent generalization is that fragments appear in a form that would be appropriate in the corresponding understood full sentence.

On the face of it, this might seem to be a convincing argument for hidden syntactic structure, since the presence of such structure would explain why the fragment has the form it has, rather than some other. However, a closer look at the data shows the limits of the putative generalization and makes such an analysis less plausible than it initially seems. First, there are numerous cases where fragments appear in a form that would be impossible in a complete sentence. Specifically, in English, only pronouns have a nominative/accusative distinction. Possessive case, on the other hand, appears both with pronouns and with NPs (realized as an NP final ‘s). Possessives exhibit typical connectivity effects as in (18-a). However, in all cases where a possessive is not expected, it is the accusative pronouns that appear in elliptical utterances, not only as expected by connectivity in (18-b), but also when a nominative would be necessary in a full clause, as in (18-c), and when there is no obvious full clausal structure to
be recovered, as in (18-d).

(18) a. Whose book is that? Kim’s/#Kim/Mine/#Me/#I. [cf. That is Kim’s/#Kim/mine/#me/#I]
d. [Choosing players for a ball game, captain gestures towards prospective players]: Me, him, her, . . . [cf. #I, #he, #she, . . .]

Similarly, for binding effects, it turns out that pronouns often appear in forms that would not be licensed in a full clause.

(19) a. A: Who will punish Bill if he fails?
 He himself/#Hei/#Him_i (#He himselfi/#Him_i will punish Billi if he fails). (GS00:376(4a))
b. A: What caused the computer to break down?
 B: A power surge?
 A: Perhaps, but the most intriguing answer is: [the computer itself]/itself/#it. (#The computer itself/#Itself_i caused the computer_i to break down.)
c. A: Who appeared to be the cause of John and Mary’s problems?
 B: Each other. (*Each other appeared to be the cause of John and Mary’s problems.)

It thus appears that although connectivity is a common situation, there are various cases where fragments could not be reintegrated as such into a well formed complete clause.

Because of the non-modularity of the sign, HPSG has no problem in accounting for connectivity effects without reference to hidden structure. In section 7.2, we sketch an account of parallelism in NSUs originating in (Ginzburg and Sag 2000), which amplifies QUDs to include a restricted amount of non-semantic information. Syntactic parallelism is obtained by imposing matching conditions between a fragment and a prior utterance. Thus prior syntactic structure is not used in constructing the content of a fragmentary utterance; it functions merely
in establishing the appropriateness of the fragment in the given context (hence the judgment on the unacceptable like (15), (16), (17), etc., which we claim are inappropriate in the discourse context provided, rather than ungrammatical). In embedding the antecedent information within QUD, Ginzburg and Sag (2000) (p. 301) make strong predictions about the extent of categorial parallelism. Specifically, only properties of the maximal element of QUD (MAX-QUD) can trigger syntactic or phonological parallelism.18

On the other hand, examples of non-connectivity such as (18) and (19) raise problems for any analysis that wishes to explain the cases where connectivity holds in terms of unpronounced syntactic structure. They require various \textit{ad hoc} assumptions to account for the absence of the expected connectivity effects. For detailed exemplification, see e.g., (Ginzburg 1999; Stainton 2006; Ginzburg 2012; Nykiel 2013). Furthermore, because deletion or reconstruction-based analyses usually do not offer an explicit theory of discourse context, even in those cases where connectivity \textit{does} hold, they almost invariably fail to offer an explicit account of how the reconstructed syntactic material is accessed in the context and introduced into syntactic structure. This is true even in cases where the antecedent is anaphorically retrieved, but is even more problematic in exophoric cases.19

It should also be noted that cases where connectivity holds (as it typically does cross-linguistically with case morphology, for instance) raise the symmetrically inverse challenge for analyses whose architecture enforces the assumption that the context used for interpreting fragments is purely semantic e.g. higher order unification accounts (Pulman (1997)) and categorial grammar (see e.g., Jacobson’s contribution in this volume). Jacobson (2016) opts for an account that closely resembles the one proposed by Ginzburg and Sag

18What of the putative cross–linguistic generalization known as P–stranding relevant both to sluicing and short answers? For an excellent discussion of the empirical and theoretical status of this generalization see Jacobson (2016). Building on earlier work by inter alia (Sag and Nykiel 2011), Jacobson points to the significant empirical unclarity the generalization faces. Jacobson sketches a potential account of certain facts related to the generalization available to non–deletion based accounts such as (Ginzburg and Sag 2000) and her own categorial grammar one. She further points out challenges faced by both deletion–based and surfacist accounts in providing a complete account of the data.

19Consider an example like (18-a) above, where the second speaker’s answer \textit{Mine} is assumed to have a structure like \textit{That is mine}. The second speaker is assumed to be able to ellipt here through recovery of the contents of the first speaker’s question. However, the question of exactly how this content is recovered is not addressed, presumably being considered to be a problem of performance that is irrelevant to a theory of competence. But this makes it impossible to address the question of constraints on the recovery mechanism, which we have just suggested, are linked to the accessibility of MAX-QUD. The question becomes even more difficult in a case like (18-d) where it is unclear how the speaker is expected to recover a specific syntactic structure from the exophoric context.
for short answers, by postulating a QuAns construction which enables case matching phenomena to be captured and offers much insightful discussion of issues relating to connectivity.

3.2 Locality effects

Locality effects have provided another classical motivation for unpronounced syntactic structure. Specifically, it has been argued that various cases of ill-formedness in elliptical constructions can be explained in terms of island violations involving such structure. Consider the following examples:

Sentence (20-a) is claimed to be ungrammatical because it exhibits the same island violation in unpronounced structure as its non-elliptical counterpart (20-b), an analysis which can only be expressed if there is unpronounced structure (cf. the similar examples provided by Chung et al. (1995), p.275).

(20) a. *They want to hire someone who speaks a Balkan language, but I don’t remember which they do \([\text{vp } \text{want to hire someone who speaks}]. \) (Merchant 2001:6, (5))

b. *They want to hire someone who speaks a Balkan language, but I don’t remember which they want to hire someone who speaks. (Merchant 2001:6, (4b))

However, these facts raise a number of problems. First, as is known since (Ross 1969), sluicing appears to absolve island violations, as illustrated by the contrast between (20) and (21).

(21) They want to hire someone who speaks a Balkan language, but I don’t remember which. (Merchant 2001:6, (4a))

Second, as shown in (23), there are cases where what would be putative island violations in unpronounced structure do not lead to ungrammaticality (though some speakers may find acceptability slightly reduced, their status is not at all comparable to that of (20-a)): ²⁰

²⁰As pointed out by Fox and Lasnik (2003), there are cases where VPE interacts with \(\text{wh}\)-movement triggering
(23) a. He managed to find someone who speaks a Romance language, but a Germanic language, he didn’t manage to find someone who speaks it.
 b. He was able to find a bakery where they make good baguette, but croissants, he couldn’t find a bakery where they make good it.

In sum, the factors that constrain the interaction of wh-movement and VPE are at present not completely understood and it is hard to see how a strong argument for unpronounced structure can be made from these facts.

Similar arguments have been made, for instance, for Bare Argument Ellipsis (see e.g., Merchant 2004) and Gapping (see e.g., Coppock 2001), purporting to show that they are affected by similar island violations in unpronounced structure. However, once again, it has been argued that similar examples which should exhibit the same island violations can also be perfectly acceptable, e.g. by Culicover and Jackendoff (2005) as well as chapter 7.

Thus, overall, the evidence appears to be mixed and does not at present allow one to draw strong conclusions either in favor of or against unpronounced structure. Our expectation is that a better understanding of the discourse conditions on the elliptical constructions in question and their interaction with wh-movement might lead to a more satisfactory explanation of the data.

3.3 The accessibility of missing referents

To conclude this section, we briefly present one final argument against hidden syntactic structure which can be derived from (Arnold and Borsley 2008), whose central point is to argue against the orphan view of non-restrictive relative clauses. Specifically, they observe unacceptability, despite the absence of island violations in the putative unpronounced structure. For example, neither the non-elliptical variant, nor the sluice in (22-a) raise a problem, but the VPE variant in (22-b) is ungrammatical:

(22) a. They heard a lecture about a Balkan language, but I don’t know which Balkan language (they heard a lecture about).
 b. *They heard a lecture about a Balkan language, but I don’t know which Balkan language they did.

See (Merchant 2008) for a proposal aiming to account for the ill-formedness of (22-b) in terms of the Max-Elide constraint which “Roughly put, […] states that if ellipsis applies in a structure with a wh-trace, ellipsis should target the largest constituent possible.” (p.141).
that fragment answers do not allow non-restrictive relative clauses connected with part of the “missing” material, whereas anaphoric it can recover the same referents despite the fact that they are not expressed. This is illustrated in (24).

(24)
 a. A: Who owns a dog?
 B: Kim, which is regrettable.
 b. A: Who owns a dog?
 B: *Kim, which is a dachshund.
 c. A: Who owns a dog?
 B: Kim, and it’s a dachshund. (Arnold and Borsley (2008):327-328)

As shown in (24-a), a non–restrictive relative clause can have as its antecedent the whole proposition expressed by the fragment, but it cannot have an understood but syntactically unrealized NP as its antecedent, as (24-b) shows. In this, which differs from the pronoun it which can access such a referent, as evidenced in (24-c). They argue that this shows that non–restrictive relatives are syntactically integrated and require a syntactically represented antecedent, whereas anaphoric it simply requires that its antecedent be accessible in conceptual structure. Assuming the presence of unpronounced syntactic structure in such cases (something like: *Kim owns a dog, which is a dachshund. for (24-b)) makes it much more difficult to distinguish the cases in a relevant way, since the unpronounced referent is syntactically accessible. On the other hand, as shown by Arnold and Borsley (2008), the analysis for fragments proposed by Ginzburg and Sag (2000) (presented below in section 7) immediately predicts the data.

4 Recoverability

The idea that ellipsis requires some form of recoverability is inherent to the concept itself. The current technical debate on recoverability originates with Chomsky (1965), who proposed a “convention to guarantee recoverability of deletion” which allows (among other cases) deletion of elements that are “otherwise represented in the sentence in a fixed position” (p. 144-145). This is the source of the position that frames recoverability as a requirement for the
presence of a syntactically identical antecedent, allowing recovery of the ellided material. Following (Sag and Hankamer 1984), HPSG studies have assumed that recoverability is governed by discourse semantics, rather than syntax: the central condition is the availability of an appropriate antecedent in the discourse context (which combines both linguistic and non-linguistic information). Providing formal conditions on recoverability therefore requires an articulated theory of context, and in particular of conversational context, which is sketched in (Ginzburg and Sag 2000) and elaborated in detail in (Ginzburg 2012).

Of course, as discussed in the preceding section, HPSG also provides means for accounting for well-known syntactic constraints on the relationship between the elliptical material and its antecedent-trigger, but these are argued to be less numerous than is usually thought. Specifically, it has been argued that many of the classical cases where acceptability is reduced in the absence of a syntactically identical antecedent can in fact receive an alternative explanation, namely that the reduced acceptability is due to violations of general discourse conditions (cf. Kehler 2002; Kertz 2013) or of construction specific discourse conditions (cf. Miller and Hemforth 2014; Miller and Pullum 2014). We will discuss in turn: (i) split antecedents and syntactic mismatches; (ii) exophoric uses; and (iii) incrementality.

4.1 Split antecedents and syntactic mismatches

A first class of cases that argue against the idea that recoverability should be based on syntactic identity are those where the previous linguistic context provides no identical antecedent-trigger (we ignore here cases of morphological mismatch known not to affect grammaticality). These include the well known cases of split antecedents and those where there is some form of syntactic mismatch between the antecedent-trigger and the ellided material. We will illustrate these in turn.

VPE with split antecedents, first discussed by Webber (1979), p.4-39, is illustrated in (25), where they hadn’t is understood as meaning ‘Willem hadn’t stayed in Wyoming and become a ranch hand himself and Jude hadn’t wound up in prison, or in a hospital, or dead, or worse.’:

21We take the term ‘antecedent-trigger’ from Cornish (1999), who uses it to designate the segment of text allowing one to construct the antecedent (he uses ‘antecedent’ to refer to the discourse-model representation making interpretation of the anaphor or ellipsis possible).

But then again, he[=Willem] would think, what about his life — and about Jude’s life, too — wasn’t it a miracle? He should have stayed in Wyoming, he should have been a ranch hand himself. Jude should have wound up where? In prison, or in a hospital, or dead, or worse. But they hadn’t. (Hanya Yanagihara, *A Little Life*, p.573)

In fact, split antecedents are a special case of a more general situation where the antecedent is recoverable from the contents of the previous discourse without actually being present in it in any appropriate form. Consider the following examples:

(26) a. Caleb is out running, as he does every morning. (Hanya Yanagihara, *A Little Life*, p.327)

b. Malcolm had built them a set of bookcases, which had partitioned their squish of a living room into such a meager sliver that when you were sitting on the sofa and stretched your legs out, you stretched them into the bookcase itself. But he [=Jude] had wanted the shelves, and Willem had said he could. (Hanya Yanagihara, *A Little Life*, p.660)

c. “Thanks for the ride,” Dicey said.
 “Any time,” Jeff answered. “[...] I was hoping to meet your sister who sings.”
 “We’re in a hurry for dinner tomorrow,” Sammy [=Dicey’s brother] said.
 “Because it’s Thanksgiving. [...]”
 “Maybe another day,” Dicey said.
 “You mean that?” he [=Jeff] asked. [...]
 “Sure,” she said.
 “Because I will,” he [=Jeff] warned her.
 “Good,” she answered, puzzled and amused. (Cynthia Voigt, *Dicey’s Song*, p.140)

In (26-a), the antecedent ‘goes running’ is inferrable from the previous sentence. Similarly, in (26-b), the antecedent ‘have the shelves’ is inferrable from ‘wanted the shelves’. As for (26-c), the previous context makes it clear that the elliptical clause is intended to mean something like ‘I will come back to meet your sister who sings’. Again, this content appears nowhere as such
in the conversational context; but it can be inferred from the dialogue as a whole.\footnote{Elbourne (2008) proposes an analysis of split antecedents according to which the antecedent of the ellipted VP is constructed from the two VPs present in the discourse. Though his proposals would work for classical split antecedents such as (25), it is unclear how they could deal with the examples in (26).}

Similarly, in the second instance of sluicing in (27), the intended antecedent is recovered by inference from the discourse context.

(27) She always knew exactly who was in and who was missing; and if you were missing, Madame probably knew why, and with whom. (Neil Bartlett, Ready to Catch Him Should He Fall) \[= knew why you were missing and with whom you had left, rather than with whom you were missing\]

Cases of syntactic mismatch between the antecedent and the elliptical sentence (e.g. voice mismatches, category mismatches) have been extensively discussed in the literature, especially for the cases of VPE and sluicing (see, among many others, Hardt 1993; Merchant 2001; Kehler 2002; Kertz 2013; Merchant 2013). For sluicing, the great majority of the literature has agreed that mismatches are impossible. For VPE, the situation is much more complex because of the fact that there is a wide range of different acceptabilities for different cases of VPE with mismatched antecedents, ranging from the perfectly acceptable to the very unacceptable. This has led to two different positions. Either one assumes that the syntax disallows mismatches, in which case acceptable cases of mismatch are analyzed as ungrammatical but repaired. This position has been defended by Lyn Frazier and her colleagues in a series of studies (see e.g. Arregui et al. 2006; Grant et al. 2012). The other is to assume that mismatches are always grammatical, and that unacceptable instances arise from the violation of independent discourse constraints (e.g. Kehler 2002; Kertz 2013).\footnote{Kim et al. (2011) develop an alternate proposal suggesting that the reduced acceptability of mismatches can be attributed to processing difficulties. Miller and Hemforth (2014) point out that this is compatible with the proposals of Kehler and Kertz and suggest that discourse factors and processing factors can cumulatively reduce acceptability.}

Within this debate, HPSG studies have followed the lead of Kehler and Kertz, but have focused on developing construction-specific discourse constraints. For VPE, Miller (2011); Miller and Pullum (2014); Miller and Hemforth (2014) distinguish two subtypes of non-comparative VPE, which they call Auxiliary-Choice and Subject-Choice respectively, and propose the following constraints.
Type 1: Auxiliary Choice VPE

FORMAL CHARACTERISTICS: The subject of the antecedent is identical with the subject of the VPE construction and the auxiliary is (at least weakly) stressed, signaling a new choice of tense, aspect, modality, or (in the most overwhelmingly frequent case) polarity.

DISCOURSE REQUIREMENT A choice between the members of a jointly exhaustive set of alternative situations must be highly salient in the discourse context, and the point of the utterance containing the VPE is limited to selecting one member of that set.

Type 2: Subject Choice

FORMAL CHARACTERISTICS: The subject of the antecedent is distinct from the subject of the VPE construction, and stressed if it is a pronoun.

DISCOURSE REQUIREMENT: A particular property must be highly salient in the discourse context, and the point of the utterance containing the VPE must be limited to identifying something or someone possessing that property.24

Importantly, they point out that when these discourse constraints are satisfied, VP anaphors like do it are dispreferred, even with mismatched antecedents. This is illustrated in (28-a) for an Aux-Choice case. (28-b) provides a Subj-Choice case.

(28) a. A—Does Bo eat meat? B—She does. [vs. #She does it.]
 b. A—Bo eats meat. B—Kim does too. [vs. #Kim does it too.]

For VPE with nominal antecedents, Miller and Hemforth (2014) show how these discourse constraints can explain the unacceptability of most cases. Specifically, for the case of Aux-Choice VPE, nouns are typically incapable of making an alternative salient. However, they point out the existence of a small class of ‘polar nouns’ that can be interpreted as concealed polar questions, as is the case for survival in (29-a), which can be paraphrased by an indirect polar interrogative as shown in (29-b).

24Note that asking a polar question or asserting a proposition are central ways of making a polar alternative salient (see section 7.2), whereas asking a wh–question is a central means of establishing the salience of a property. Although we will not attempt to formalize these discourse constraints in this paper, we note that this could be done quite straightforwardly in terms of (Maximal)-Question Under Discussion, using the KoS framework developed in section 7.
Miller and Hemforth show that when a polar noun appears in a discourse context that makes its interpretation as a concealed polar question salient, as is the case in (29-a), it can serve as a highly acceptable antecedent for VPE. These observations are corroborated through a series of acceptability experiments. On the other hand, NPs are incapable of making open propositions salient, so that Subj-Choice VPE is never acceptable with a nominal antecedent.

Similarly, though no detailed study has been conducted, we expect that the discourse conditions on sluicing (namely that it requires that a quantified proposition be at issue, cf., footnote 15 and section 7.4.3) can account for the fact that voice mismatches are unacceptable. On the other hand, examples such as (30), due to Beecher (2008), illustrate the possibility of sluicing with a nominal antecedent. In both cases, there exists an entailment of the requisite quantified proposition and, despite the lack of a clausal (verbal) antecedent, the sluice seems acceptable, as expected from an account based on the above discourse condition:

(30)

a. We’re on to the semi-finals, though I don’t know who against. (Beecher 2008:6:(8a))

b. The only thing I can come up with is contamination but I do not know what from. (Beecher 2008:8:(10a))

4.2 Exophoricity

Let us now consider exophoric uses. In these, there simply is no linguistic antecedent at all. Examples of exophoric VPE are provided in (31).

(31)

a. [Entering a construction site, A hands a helmet to B] Do I have to? [compare: #Do I have to do it?] (Miller and Pullum 2014:20, (24a))

b. When the rain began on Thursday, I simply had the kids throw on slickers and
use plastic grocery bags to cover backpacks. I rode with them to school, for solidarity, but when we pulled up, an upperclassman looked at them, then me, and said half-accusingly, “How could you?” Our family experiment had suddenly gone from cool and hip to strange and compulsive. [compare: #How could you do it?] (COCA, Miller and Pullum 2014:21, (26))

Miller and Pullum (2014) argue that exophoric VPE is in fact freely available syntactically (contrary to Hankamer (1978) who claims that the rare cases of exophoric VPE are idioms) but that it is relatively rare because the discourse conditions on VPE are hard to satisfy through extralinguistic context. Specifically, for Aux-Choice VPE, they argue that, in general, it is difficult for non-linguistic context to make an alternative salient. The most usual means for doing so are polar questions and assertions (see section 7), but these typically cannot be performed non-linguistically. Thus, only less frequent strategies for establishing an alternative as the QUD can give rise to exophoric VPE. Directives, for example, can make an alternative salient (whether or not to comply), whether they are performed linguistically or deictically, as in (31-a). Similarly uttering a reproach, as in (31-b), forces accommodation of the alternative between doing or not doing the incriminated behavior, satisfying the discourse conditions. Crucially, they point out that when the discourse conditions on VPE are satisfied, do it is less felicitous, as shown in the variants of (31) above. On the other hand, they suggest that it is almost impossible for non-linguistic context to make an open proposition salient, so that exophoric Subj-Choice cases are almost impossible.

Similarly, though exophoric sluicing is rare in corpora, it is clearly attested, as shown by examples like (32).

(32) a. She had reached the head of the line. Her eye caught a name on the list, and she made a snap decision. When the ticket seller said “Where to? ”she answered, “Gmintagad”. (COCA)

b. “Bonsoir,” he said. “How may I help you?” […] Sophie […] simply laid the gold key on the counter in front of the man. The man glanced down and immediately stood straighter. “Of course. Your elevator is at the end of the hall. I will alert someone that you are on your way.” Sophie nodded and took her key
back. “Which floor?” The man gave her an odd look. “Your key instructs the elevator which floor.” She smiled. “Ah, yes.” (COCA)

c. In Treatment, but in Which Language? [Title of Article, New York Times, Mar 31 2015; intended interpretation: in (psychotherapeutical) treatment, but in which language should the treatment be taking place?)

Once again, we assume that the relative rarity of exophoric sluices is due to the discourse conditions on the use of the construction: sluicing requires that a quantified proposition be at issue (see discussion of example (60) below and Ginzburg 2012, section 7.8). This is difficult to construct non-linguistically, in a way parallel to what is proposed for VPE.

Another class of exophoric ellipsis are declarative fragments tied to various interactional genres, as in (33):

(33) a. (Buying a train ticket):

Client: A return to Newcastle please. (= I want a return . . . , please give me a return . . . , . . .)

b. (Buying in a boulangerie): Baker: Two Euros, forty cents. (= This costs two Euros, forty cents . . . , please pay me two Euros, forty cents . . . , . . .)

Finally, we note here a class of non-sentential utterances, for which exophoric resolution is close to being the rule. This involves the little discussed phenomenon of exclamative sluices (Ginzburg 2012), exemplified in (34):

(34) a. It makes people “easy to control and easy to handle,” he said, “but, God forbid, at what a cost!” (COCA)

b. What a mess / relief / surprise / goal / jerk / view!

Example (34-a) illustrates a case of an anaphoric exclamative sluice that is parallel to typical interrogative sluices. As for examples like (34-b), they are by far the most frequent and are typically exophoric. This shows that any account of sluicing based on the long standing

25In section 7.5 below, we analyze the case of sluices of the form ‘Who else?’, which are compatible with a referential antecedent ‘X V’ed’. Nonetheless, their acceptability clearly requires the issue ‘Somebody else apart from X V’ed’ to be worthy of discussion.
assumption that wh-binding requires a linguistic antecedent is not viable.

It is important to emphasize the real difficulty these exophoric cases pose for analyses that claim that recoverability must be stated in terms of any kind of syntactic identity (including LF-identity). It is completely unclear how such analyses can make sense of exophoric uses at all, barring the assumption that a speaker constructs a specific syntactic representation of the relevant extralinguistic properties, which could then be used as an “antecedent”. However, this idea defeats the basic purpose of the idea of “recoverability” of deletions, as initially proposed by Chomsky, since it then becomes unclear why there are any constraints at all on exophoric uses.26

4.3 Incrementality

An additional argument against viewing a construction such as sluicing as S-deletion (or similar) is that it is possible as soon as its nominal antecedent has been introduced, as in (35); it need not occur as part of a completed sentential construction. This can occur either in monological examples such as (35-a) or in dialogical cases such as (35-b) and (35-c). Once one adopts an incremental view of semantic processing, accommodating such data becomes straightforward, as we will show in section 7.4.3, based on (Ginzburg et al. 2017).

(35)
a. Someone, {John? / I can’t figure who}, has taken the kitchen scissors.

c. A: Somewhere B: Where? A: not far from here B: Aha A: someone is enjoying the cheese I forgot on the train.

26(Merchant 2010) has the most developed discussion of exophoric uses from an unpronounced structure perspective that we are aware of. He proposes that examples of NSUs like (32-a), (32-b) and (33) should be analyzed using the concept of scripts (in the sense of Schank and Abelson 1977). It is not clear, however, whether an example like (32-c) is amenable to such an analysis. And it is even less clear how scripts could account for the wide range of exophoric VPE cases reported in (Miller and Pullum 2014) and illustrated here in (31).
5 Licensing

As has been mentioned above and as will be developed in much more detail in section 7 below, the HPSG approach to ellipsis resolution makes central use of the notion of Question Under Discussion (QUD), which is augmented to include restricted amounts of non-semantic information. In a sense then, HPSG assumes that QUD is the central factor in the licensing of ellipsis. This make sense under a more general view of anaphora resolution involving some notion of accessibility or givenness (see e.g. Ariel 1990; Gundel et al. 1993), as it is known that, in general, phonologically weaker anaphors require more accessible antecedents. Since ellipsis can be seen as the phonologically weakest form of anaphor, it requires antecedents that are most accessible, namely, antecedents involved in the most salient QUD at any moment in the discourse. This feature of the model thus makes strong general predictions about the syntax, phonology, semantics and pragmatics of elliptical constructions, namely that only properties of the most salient QUD can be relevant in determining their form and interpretation.

Beyond this, HPSG does not assume that there is a single mechanism underlying ellipsis. Rather, elliptical constructions each have their own specific licensing conditions. To the extent that generalizations can be made, they can be captured through the hierarchy of types. For example, it is known that different subtypes of VPE have subtly different properties (see e.g. Miller 2011; Kertz 2013). The general properties of VPE can be attributed to the construction-type VPE, whereas the various subconstructions can be specified for their specific properties, while inheriting the general properties from the more general construction. Similarly it would be possible to represent the generalizations available for different types of argument ellipsis (see section 2.1.1 and next section), including VPE, through the type hierarchy, and more generally to associate the general properties of ellipsis involving QUD to an overarching ellipsis-type, though to our knowledge this has not yet been attempted. In sum, the basic methodological assumption of HPSG is that one should not move too quickly in assuming that properties of constructions are generalizable. The complexity of the varieties of subconstructions must first be established in as much detail as possible before meaningful generalizations can be made.

Throughout this chapter, the discussion of the various elliptical constructions highlights
their specific licensing properties. We have distinguished three central cases: (i) certain constructions license non–sentential constituents as complete utterances (e.g. Bare Argument Ellipsis, Sluicing, Gapping); (ii) certain constructions license non-canonical correspondence between ARG-ST and Valence features (e.g. Null subjects and objects, VPE, NCA); (iii) certain constructions license a non-canonical correspondence between the PHON of a mother and its daughters (e.g. Peripheral ellipsis, RNR). More specific constructions involve more specific licensing conditions, e.g. VPE is licensed by the presence of an auxiliary in English, whereas sluicing requires a wh-phrase.

6 The syntax of argument ellipsis

In this section we provide a more explicit discussion of the constructional analysis of argument ellipsis which was sketched in section 2.1.1 above. As mentioned there, the crucial insight underlying the analysis is that there is a non-canonical correspondence between the argument structure of a head and its valence. More specifically, the value of the ARG-ST feature is not simply the concatenation of the values of the valence features SPR and COMPS.

6.1 Phrase structure and valence features in HPSG

In HPSG, the combination of heads with their sisters is governed by various rules, two of which are crucially relevant in the present context. The HEAD-COMPLEMENT RULE combines the head (H in (36-a)) with its complements (1 to n in (36-a)). The resulting phrase inherits the HEAD value of its head-daughter, but crucially, not the value of the COMPS feature whose specification has been satisfied, so that it has an empty list as the value for COMPS. Similarly, the HEAD-SPECIFIER RULE combines the head with its specifier (1 in (36-b)), satisfying the valence requirement.

\[(36) \begin{align*}
&\text{a. Head-Complement Rule} \\
&\text{phrase} \quad \text{VAL} \quad \text{COMPS} \quad \langle \rangle \rightarrow H \quad \text{word} \quad \text{VAL} \quad \text{COMPS} \quad \langle 1, \ldots, n \rangle \quad 1, \ldots, n \\
&\text{b. HeadSpecifier Rule}
\end{align*}\]
This is illustrated in tree (37). In order to make these rules and the tree fully clear, we need to introduce the way STRUCTURE SHARING works in HPSG. It is indicated by boxed numbers. Putting the same boxed number in several places in a feature structure or rule, indicates that the corresponding values are token identical. Thus, in tree (37), the 2 expresses the fact that the feature structure which is the sole element in the value of the COMPS list of saw is token identical to the feature structure describing the NP Pat. This means that it would be entirely redundant to replace ‘COMPS(2)’ by ‘COMPS(2NP)’ (of course, the tree would have expressed exactly the same property if we had had the latter above saw and only the former above Pat). Similarly, in (36-a), the shared boxed numbers indicate that the feature structures describing the items on the COMPS list and those describing the corresponding daughters are token identical.27

Similarly, tree (38) provides an example with the auxiliary will.

27Signs in HPSG can be lexical or phrasal. In the latter case, formally speaking, the constituent structure is modeled within the feature structures using the features MOTHER, HEAD-DTR (Head-Daughter) and NON-HEAD-DTRS (Non-Head-Daughters). Thus tree representations of the type given in (37) are an informal simplification enhancing readability.
6.2 The Argument Realization Principle and ellipsis

Given this set up, we can provide an analysis of the ellipsis of complements or specifiers simply by allowing non-canonical constructions for heads, in which items mentioned in the ARG-ST do not appear in the valence features (such constructions are non-canonical in the sense that they do not respect the general formulation of the ARGUMENT REALIZATION PRINCIPLE provided in (41) below). For instance, we can account for Verb Phrase Ellipsis by constraint (39-a) which allows for auxiliaries with a non-canonical relation between the COMPS and ARG-ST lists. Constraint (39-a) will be inherited by will (since it is an auxiliary), providing it with the alternate COMPS list given in (39-b), and thus giving rise to a structure like (40) (see e.g., Kim 2006).\(^\text{28}\)

\[(39) \quad \text{a. aux:} \begin{bmatrix}
\text{SPR} & \langle 1 \rangle \\
\text{COMPS} & \langle \rangle \\
\text{ARG-ST} & \langle 1 \rangle \text{VP[pro]} \end{bmatrix}\]

\(^{28}\)Note that the properties \([\text{nom}]\) for the NP subject and \([\text{base}]\) for the VP are inherited from the basic lexical constraints for auxiliaries. Note also that some recent versions of HPSG would not have the non-branching VP which we have used for simplicity in (40) (a similar comment can be made for the non branching S node in (45) below).
Since (39-a) applies to all auxiliaries, we correctly express the classical generalization that VPE is systematically available behind auxiliaries. Specifying that the VP argument of pre-elliptical auxiliaries is pronominal essentially captures the intuition of Schachter (1978) and means that it will be interpreted through general principles for resolving anaphoric and/or exophoric dependencies (cf. e.g., Hardt 1993).

In the light of this example, we can state the Argument Realization Principle as follows:

(41) Argument Realization Principle

\[
\text{word} \Rightarrow \begin{bmatrix}
\text{VALENCE} & \begin{bmatrix}
\text{SPR} & 1 \\
\text{COMPS} & 2 \\
\text{ARG-ST} & 1 \oplus 2 \oplus \text{list (non-canonical)}
\end{bmatrix}
\end{bmatrix}
\]

In (41), \(\oplus \) is the list concatenation operator. For the purposes of the present article, non-canonical items on the ARG-ST list will always correspond to null pronominals.\(^{30}\)

\(^{29}\)Further work on VPE in HPSG includes (Grover et al. 1995) on strict/sloppy ambiguity; (Lappin 1999; Gregory and Lappin 1999) on antecedent contained deletion; (Egg and Erk 2002; Arnold and Borsley 2010) on auxiliary-stranding relative clauses; and (Lee 2012). For an early HPSG analysis of Pseudogapping as a case of VPE where the pre-elliptical auxiliary selects a complement, see (Miller 1990).

\(^{30}\)Other non-canonical items include extracted elements and certain types of clitics, see e.g., (Miller and Sag 1997).
We can now more precisely indicate the analysis for null pronominal subjects and objects, as in the Spanish and Brazilian Portuguese examples (3) and (4), repeated here.

(42) Maria escolheu o livro e [s_{NP Ana} [v_{VP colocou} [v_{PP na} [s_{NP estante}]]].
Maria chose the book and Ana put in bookcase.

‘Maria chose the book and Ana put it in the bookcase.’

(43) Maria chegou. [s_{VP Estaba} [s_{NP cansado}]].
Maria arrived. She was tired.

‘Maria arrived. She was tired.’

The constraint in (44-a) allows a pronominal subject argument to appear on the ARG-ST list but not on the SPR list, giving rise to (45) as the analysis for (43). (44-b), on the other hand, allows for a pronominal object argument that does not appear on the COMPS list, and provides (42) with an analysis similar to that given for will in (40). 31

\[
\begin{align*}
&\text{a. } V: \\
&\quad \begin{cases}
\text{SPR} & \langle \rangle \\
\text{COMPS} & \langle B \rangle \\
\text{ARG-ST} & \langle NP[non-can, ppro, nom] \rangle \oplus \langle B \rangle \\
\end{cases} \\
&\text{b. } V: \\
&\quad \begin{cases}
\text{SPR} & \langle A \rangle \\
\text{COMPS} & \langle B \rangle \\
\text{ARG-ST} & \langle A \rangle \oplus \langle NP[non-can, ppro, acc] \rangle \oplus \langle B \rangle \\
\end{cases}
\end{align*}
\]

In (44-a), $[B]$ is the COMPS list which is concatenated to a list consisting of a non-canonical nominative personal pronoun NP in the ARG-ST. In (44-b), this non-canonical argument is missing in the COMPS list (list $[B]$ may of course be empty).

31Brazilian Portuguese allows Ana colocou ele na estante, with the overt strong object pronoun ele, as a variant of (42). These two sentences will receive exactly the same analysis with respect to syntax and semantics, except that the pronominal NP will appear both on the ARG-ST and on the COMPS list in the latter case, causing the object pronoun to be overtly realized. The intended anaphoric link to the object of the previous sentence in the context provided is mediated through the ARG-ST list, which is the same in both cases, so that anaphoric resolution works similarly. Note however that the details of the discourse pragmatics will be different, so that constraint (44-b) will also have to impose additional properties at that level.
7 HPSG ellipsis resolution in a dialogue setting

Dialogue is the primary setting for language, and elliptical language, where content is resolved largely based on context, is particularly characteristic of this setting. In this section we offer an explicit model of dialogue context and show how this can be used in the analysis of various elliptical constructions. In so doing we also introduce an alternative version of HPSG, using the formalism of Type Theory with Records. As we argue below, this version of HPSG, HPSG_{TTR}—or at least its defining characteristics—is needed for an analysis that strives to deal with the challenges of spoken language.\(^{32}\)

7.1 A dialogical working example

We will illustrate how HPSG analyzes ellipsis constructions with reference to the constructed example in (46). A poses a \(wh\)-question. This triggers clarification interaction concerning the intended reference of the NP ‘Bo’ via a \textit{reprise fragment} (see section 7.4.4); B’s question in (2) is answered via the \textit{short answer} in (3) (see section 7.4.2); the original question posed in (1), three turns earlier, is then the antecedent for the VPE utterance in (4); via inference, (4) triggers a (direct) sluice in (5) (see section 7.4.3). B responds with the short answer in (6). This, in turn, triggers the VPE query in (7), which exemplifies a self-correction utterance (see

\footnote{More generally, Ginzburg and Poesio (2016) propose constraints that any formalism striving to deal with spoken language needs to satisfy.}
section 7.4.5). This gets answered by the polar particle ‘no’ (see section 7.4.1).

(46) A(1): Who visited Bo?
B(2): Bo?
A(3): My cousin.
B(4): Jack did.
A(5): Who else? (#Whom else?)
B(6): No one.
A(7): Didn’t Bill, I mean Mary?
B(8): No.

(46) exemplifies various claims we made earlier:

• The role of inference in ellipsis resolution (e.g., in (2) resolution is driven by B’s inability to resolve the reference of ‘Bo’ in (1)—there is no salient linguistic content around to provide the content ‘Who do you mean ‘Bo’?’ for this NSU; similarly, in (5) the resolution emerges from the possibility that Jack does not constitute the sole answer to (1)).

• The need for resolution to operate across turns (virtually all cases), in some cases multiple turns (e.g., (4)).

• The need to project structural (categorial and phonological) information into context in order to capture cross-turn parallelism of varying degrees (e.g., segmental identity in (2), categorial identity in (5)).

• The interleaving of self- and other-repair in ellipsis resolution (e.g., (2) and (7)).

The account we propose is based on two main components. First, independently motivated processes of dialogue context dynamics—these are described in section 7.2, with a brief sketch of the presupposed semantic framework in section 7.3. Second, constructional/lexical specification that can interface directly with dialogue context that contains both linguistic and non-linguistic information. These are sketched in section 7.4. The two components are combined in an analysis of the above dialogue in section 7.5, which concludes the chapter.
Dialogue Gameboard

<table>
<thead>
<tr>
<th>Component</th>
<th>Type</th>
<th>Keeps track of</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spkr</td>
<td>Individual</td>
<td>Turn ownership</td>
</tr>
<tr>
<td>Addr</td>
<td>Individual</td>
<td></td>
</tr>
<tr>
<td>utt-time</td>
<td>Time</td>
<td></td>
</tr>
<tr>
<td>Facts</td>
<td>Set(propositions)</td>
<td>Shared assumptions</td>
</tr>
<tr>
<td>VisualSit</td>
<td>Situation</td>
<td>Visual scene</td>
</tr>
<tr>
<td>Moves</td>
<td>List(Locutionary propositions)</td>
<td>Grounded utterances</td>
</tr>
<tr>
<td>QUD</td>
<td>Partially ordered set((question, FEC))</td>
<td>Live issues</td>
</tr>
<tr>
<td>Pending</td>
<td>List(Locutionary propositions)</td>
<td>Ungrounded utterances</td>
</tr>
</tbody>
</table>

Table 2: Dialogue Gameboard

7.2 The Dialogue Gameboard

Our account of dialogue context follows that developed within KoS (cf., footnote 5 and Ginzburg 1994; Ginzburg and Cooper 2004; Larsson 2002; Purver 2006; Fernández 2006; Ginzburg and Fernández 2010; Ginzburg 2012). KoS is a theory that combines an approach to semantics inspired by situation semantics and dynamic semantics with a view of interaction influenced by Conversational Analysis. On the approach developed in KoS, there is actually no single context — rather, analysis is formulated at a level of information states, one per conversational participant. Each information state consists of two ‘parts’, a private part and the dialogue gameboard, inspired by Lewis (1979), that represents information that arises from public interactions. For recent psycholinguistic evidence supporting this partition see, for instance, (Brown-Schmidt et al. 2008).

The structure of the dialogue gameboard (DGB) is given in table 2. The Spkr and Addr fields allow one to track turn ownership; Facts represents conversationally shared assumptions; VisualSit represents the dialogue participant’s view of the visual situation and attended entities; Pending represents moves that are in the process of being grounded and Moves represents moves that have been grounded; QUD tracks the questions currently under discussion, though not simply questions qua semantic objects, but pairs of entities which we call InfoStrucs: a question and an antecedent sub-utterance; motivation for this view of QUD is given below.

In terms of the DGB, the model of context in (Sag and Hankamer 1984) had some version
of Facts (a mental model as in (Johnson-Laird 1983) or situational model like (Zwaan and Radvansky 1998)) and of Moves (a ‘propositional textbase’, see (Fletcher 1994)). The DGB, then, goes beyond such a view of context in at least two significant ways which derive from the fact that it is intended as a contextual resource for dialogical interaction, in contrast to earlier models of context, intended to process text or monologue. The two fundamental innovations relate to QUD and Pending.

Questions get introduced into QUD by a number of processes. These include: querying (asking q makes the question q QUD-maximal); assertion (asserting p makes the (polar) question p? QUD-maximal); accommodation triggered by clarification interaction (e.g., if A’s sub-utterance u is difficult to resolve or involves an error, the issue ‘what did A mean by u?’ can become QUD-maximal); accommodation triggered by interaction in a conversational genre (e.g., in a customer/client interaction, the issue ‘what does the client require?’ can become QUD-maximal). Adopting the assumption that (structural) parallelism typically exhibits a similar time course to the salience of the relevant entity of QUD, we can capture such effects by viewing QUD as tracking not simply questions qua semantic objects, but pairs of entities: a question and an antecedent sub-utterance. This latter entity provides a partial specification of the focal (sub)utterance, and hence it is dubbed the Focus Establishing Constituent (FEC) (cf. parallel element in higher order unification-based approaches to ellipsis resolution e.g. (Gardent and Kohlhase 1997)); Vallduví (2016) relates the FEC with a notion needed to capture contrast. Thus, the FEC in the QUD associated with a wh-query will be the wh-phrase utterance, the FEC in the QUD emerging from a quantificational utterance will be the NP utterance, whereas the FEC in a QUD accommodated in a clarification context will be the sub-utterance under clarification.

Pending is the contextual resource corresponding to utterances that are still in progress or under clarification. One of the key structuring aspects of conversational interaction is the ubiquitous metacommunicative interaction between the participants observable via periodic verbal and gestural backchannels, and occasionally via clarification questions of various kinds (e.g., ‘What did the speaker mean by ‘…’ ’). This cycle of grounding (Clark 1996) and clarification interaction (Ginzburg and Cooper 2004) is also present for a given speech participant monitoring her own speech, overt evidence for which are various disfluencies such
as hesitations (‘the next thing to say is problematic’) and self-corrections (‘the recent sub-utterance needs fixing’). Ginzburg (2012) offers detailed arguments on this issue, including considerations of the phonological/syntactic parallelism exhibited between CRs (Clarification Requests, cf., 2.3) and their antecedents and the existence of CRs whose function is to request repetition of (parts of) an utterance, see (10) above. Taken together with the obvious need for Pending to include values for the contextual parameters specified by the utterance type, Ginzburg concludes that the type of Pending combines tokens of the utterance, its parts, and of the constituents of the content with the utterance type associated with the utterance. An entity that fits this specification is the *locutionary proposition* defined by the utterance: in the immediate aftermath of a speech event u, Pending gets updated with a record whose two components are u and T_u, a grammatical type for classifying u that emerges during the process of parsing u. Locutionary propositions are instances of *Austinian propositions*, see (Barwise and Etchemendy (1987)). The original Austinian conception was that s is a situation deictically indicated by a speaker making an assertion whose truth involves s being of type T. A locutionary proposition specializes this notion to the case of a speech event u and a grammatical type T_u, in other words, an entity such as the *sign* in the sense of HPSG.

The relationship between u and T_u—describable in terms of the proposition

$$p_u = \begin{bmatrix}
\text{sit} = u \\
\text{sit-type} = T_u
\end{bmatrix}$$

can be utilized in providing an analysis of grounding/clarification-interaction conditions of an utterance:

$$\text{(47)} \quad \begin{array}{l}
a. \quad \text{Grounding: } p_u \text{ is true: the utterance type fully classifies the utterance token.} \\
b. \quad \text{Clarification-interaction: } p_u \text{ is false, either because } T_u \text{ is weak (e.g. incomplete word recognition) or because } u \text{ is incompletely specified (e.g. incomplete contextual resolution—problems with reference resolution or sense disambiguation).}
\end{array}$$
7.3 Grammar and Semantics in Type Theory with Records

In this section, we introduce the basic semantic and grammatical notions we use in the rest of this section. KoS is formulated within the framework of Type Theory with Records (TTR) (Cooper 2005; Cooper and Ginzburg 2015), a model-theoretic descendant of Martin-Löf Type Theory (Ranta 1994) and of situation semantics (Barwise and Perry 1983; Ginzburg and Sag 2000). TTR enables one to develop a semantic ontology, including entities such as events, propositions, and questions. With the same means TTR enables the construction of a grammatical ontology consisting of utterance types and tokens and of an interactional domain in which agents utilize utterances to talk about the semantic universe.

Ginzburg (2012), chapter 5 provides detailed argumentation for what makes TTR advantageous for a dialogically oriented grammar and, in particular, for the advantages of analyzing signs in terms of record types rather than typed feature structures, as done in standard HPSG (henceforth HPSG\textsubscript{TFS}) and other ‘unification-based’ frameworks. We summarize the arguments here:

- **Object level types and tokens**: HPSG\textsubscript{TTR} provides access to both types and tokens at the object level, specifically here to utterance tokens (or *speech events*) and utterance types (also known as *signs*). This is crucial in formulating grounding/clarification-interaction conditions of an utterance, as in (47), which constitutes the basic dynamic process in utterance processing. It is also a crucial ingredient in providing semantics for repair constructions (see e.g., sections 7.4.4 and 7.4.5 below) and for quotation (Bonami and Godard 2008; Ginzburg and Cooper 2014), which are anaphoric to utterance tokens and involve inference processes that make references to utterance types. HPSG\textsubscript{TFS} specifies a grammar in terms of types but has no corresponding means of directly referring to tokens that constitute speech events.34

34Ginzburg (2012) reviews the history of HPSG’s view of formalizing grammars on this score which were, with one exception, formulated either in terms of tokens or, subsequently, types. Pollard and Sag (1987) suggested thinking about feature structures as ‘partial descriptions of signs (or sign tokens) and other linguistic objects which occur as part of signs.’ (Pollard and Sag (1987)), p. 28. However, this was violently repudiated by Pollard and Sag (1994): ‘One thing that [language] certainly does not consist of is individual linguistic events or utterance tokens, for knowledge of these is not what is shared among the members of a linguistic community.’ (Pollard and Sag (1994)), p. 14. Paul King, on the other hand, in his formalizations of HPSG (see e.g. King (1989, 1996)), does view a grammar as a characterization of the class of well-formed utterance tokens. In (King 1996), he identifies a token as a pair \(\langle u, I \rangle \) of an entity \(u \) and an interpretation \(I \) (in a technical sense King develops). From this, he constructs types as equivalence classes of indiscernable tokens. Whether King’s theory could serve to underpin
• **Direct access to semantic entities**: HPSG\textsubscript{TTR} directly provides semantic entities, whereas HPSG\textsubscript{TFS} simulates them. Thus, whereas HPSG\textsubscript{TTR} can effect variable binding, function definition, and abstraction, in HPSG\textsubscript{TFS} these notions are merely coded up.35 To take a concrete example: as we will shortly see, HPSG\textsubscript{TTR} represents the contextual parameters of a meaning by means of record types. A token of such a type—a record—represents a specific context for an utterance. In HPSG\textsubscript{TFS} there are ways of representing contextual parameters but there is no explicit way of modelling the fact that these need to be instantiated in context.

For current purposes, the key notions of TTR are the notion of a *judgement* and the notion of a *record*.

• **Typing judgements** A typing judgement $a : T$ classifies an object a as being of type T.

• **Records** A record is a set of fields assigning entities to labels of the form (\textsubscript{48-a}); a concrete instance is exemplified in (48-b).36 Records are used here to model events and states, including utterances, and dialogue gameboards.

\begin{equation}
\begin{aligned}
(48) \quad & a. \begin{bmatrix}
 l_1 = val_1 \\
 l_2 = val_2 \\
 \vdots \\
 l_n = val_n
\end{bmatrix} \\
& b. \begin{bmatrix}
 \text{temp} = -28 \\
 \text{e-time} = 2\text{AM, Feb 17, 2011} \\
 \text{e-loc} = \text{Name}
\end{bmatrix}
\end{aligned}
\end{equation}

• **Record Types** A record type is simply a record where each field represents a judgement rather than an assignment, as in (49-a). Record types are used to model utterance types

35 As Penn (2000)p. 63 puts it (in discussing a related set of issues), ‘At this point, feature structures are not being used as a formal device to represent knowledge, but as a formal device to represent data structures that encode formal devices to represent knowledge’.

36 Assignment of an entity to a label is noted by ‘=’.
(HPSG signs, as in (49-b)), as components of semantic entities such as propositions and questions, and to express rules of conversational interaction.

\[
\begin{array}{l}
(l_1 : T_1) \\
(l_2 : T_2) \\
\vdots \\
(l_n : T_n)
\end{array}
\]

37 In (49-b) we make use of the notation \([x=k : T]\) which is based on the notion of a manifest field (Coquand et al. 2003). This is a shorthand for a judgement \(x : T_k\) where \(T_k\) is the singleton subtype of \(T\) whose only witness is \(k\). For instance, “\(\text{CAT} = \text{V}^{[+\text{fin}]}: \text{syncat}\)” means \(\text{cat} : \text{syncat}_{V^{[+\text{fin}]}}\), so in such a case \(\text{CAT}\) is restricted to the subtype of the type \(\text{syncat}\) whose sole witness is \(\text{V}^{[+\text{fin}]}\).
To take a more linguistic example, a conversational state r will be a record such that the conditions in (51) hold—it is of the type dialogue gameboards must satisfy; in other words, r should have the make up in (51-b) and the constraints in (51-c) need to be met:

\[(51)\]
\[a. \quad r : \text{DGBT}\]
\[b. \quad r = \begin{bmatrix}
\text{spkr = A} \\
\text{addr = B} \\
\text{utt-time = t} \\
\text{c-utt = p_{utt(A,B,t)}} \\
\text{FACTS = cg} \\
\text{Moves = } \langle m_1, \ldots, m_k \rangle \\
\text{QUD = Q} \\
\text{Pending = } \langle p_1, \ldots, p_k \rangle
\end{bmatrix} : \text{DGBT}\]
\[c. \quad A: \text{IND}, B: \text{IND}, t: \text{TIME}, p_{utt(A,B,t)}: \text{addressing}(A,B,t); \text{cg: Set(Proposition)}; \langle m_1, \ldots, m_k \rangle: \text{list(locutionaryProposition)}; Q: \text{poset(InfStruc)}; \langle p_1, \ldots, p_k \rangle: \text{list(locutionaryProposition)}\]

The final two notions we need are propositions and questions. We already mentioned above the notion of an Austinian proposition. Truth conditions for Austinian propositions are defined in (52):

\[(52)\]
\[\text{A proposition } p = \begin{bmatrix}
\text{sit} = s_0 \\
\text{sit-type} = ST_0
\end{bmatrix} \text{ is true iff } s_0 : ST_0\]

Extensive motivation for the view of questions as propositional abstracts has been provided in (Ginzburg 1995; Ginzburg and Sag 2000)—TTR contributes to this by providing an improved
notion of simultaneous, restricted abstraction: A (basic, non-compound) question is a function from records into propositions.

Here we assume a minor refinement of this view proposed by Ginzburg et al. (2014a). This involves introducing a notion of Austinian questions, defined as records containing a record and a function into record types, the latter associated with the label ‘abstr(act)’. The role of wh-words on this view is to specify the domains of these functions; in the case of polar questions there is no restriction, hence the function component of such a question is a constant function. (53) exemplifies this for a unary ‘who’ question and a polar question. For notational simplicity, we will notate questions in what follows just in terms of the associated abstract.

\[(53)\]

\[a. \text{Who} = \begin{bmatrix} x_1 : \text{Ind} \\ c_1 : \text{person}(x_1) \end{bmatrix} \]
\[b. \text{Whether} = \text{Rec} \]
\[c. '\text{Who runs}' \rightarrow \begin{bmatrix} \text{sit} = r_1 \\ \text{abstr} = \lambda r: \text{Who}\left(\begin{bmatrix} c : \text{run}(r.x_1) \end{bmatrix}\right) \end{bmatrix} \]
\[d. '\text{Whether Bo runs}' \rightarrow \begin{bmatrix} \text{sit} = r_1 \\ \text{abstr} = \lambda r: \text{Whether}\left(\begin{bmatrix} c : \text{run}(b) \end{bmatrix}\right) \end{bmatrix} \]

We combine all elements introduced in this section in a sketch of how clarification interaction can be specified. In principle one could have a theory of clarification interaction based on generating all available CRs an utterance could give rise to. But in practice, there are simply too many to be associated in a ‘precompiled’ form with a given utterance type.

Instead, CRs can be specified by means of a uniform class of conversational rules, dubbed Clarification Context Update Rules (CCURs) in (Ginzburg 2012). Each CCUR specifies an accommodated MaxQUD (the maximal element of QUD) built up from a sub-utterance \(u_1\) of the target utterance, the maximal element of Pending (MaxPending). Common to all CCURs is a license to follow up MaxPending with an utterance which is co-propositional with MaxQUD.\(^\text{39}\) (54) is a simplified formulation of one CCUR, Parameter identification, which

\(^{38}\)This refinement is motivated in part by the need to enable conjunction and disjunction to be defined for questions; it also enables an account of the interaction between questions and adjectives, as in ‘difficult/quick/philosophical question’.

\(^{39}\)Two utterances \(u_0\) and \(u_1\) are co-propositional iff the questions \(q_0\) and \(q_1\) they contribute to QUD are co-
allows B to raise the issue about A's sub-utterance u_0: *what did A mean by u_0?* (*pre* expresses the preconditions and *effects* specifies the effect of the rule; *MaxPending*.sit.constits* expresses a path):

\[\begin{align*}
\text{Parameter identification:} \\
\text{pre} : & \quad \text{Spkr : Ind} \\
& \quad \text{MaxPending : LocProp} \\
& \quad u_0 \in \text{MaxPending}.\text{sit.constits} \\
\text{effects} : & \quad \left[q = \lambda x \text{Mean}(A,u_0,x) \right] \\
& \quad \left[\text{sit} = u_0 \right] \quad \text{: InfoStruc} \\
& \quad \left[\text{sit-type} = T_{u_0} \right] \\
& \quad \text{LatestMove : LocProp} \\
& \quad c_1 : \text{CoProp(LatestMove}.\text{cont,MaxQUD}.q) \\
\end{align*}\]

7.4 Non–Sentential Utterance Constructions

The detailed theory of context sketched in previous sections enables the development of a grammar of the various types of sentential fragments discussed earlier. The basic strategy adopted in KoS/HPSG$_{TR}$ to analyze NSUs is to specify construction types where the combinatorial operations integrate the denotata of the fragments with elements of the DGB. We sketch how this can be done with several such construction types; a detailed account of a wide variety of sentential fragments analyzed in such terms can be found in (Fernández 2006; Ginzburg 2012).

7.4.1 Propositional Lexemes

yes In its most straightforward use, ‘yes’ affirms the proposition p, where p? is the maximal element in QUD, either because the polar question p? was posed or as a side effect of an assertion of p. Hence, the lexical entry in (55). Categorically ‘yes’ is classified here as an propositional. Co-propositionality for two questions q_0 and q_1 means that their range is not disjoint, i.e., there exists a record r such that $q_0(r) = q_1(r)$.
adverbial40 that can only occur as a root utterance (cf., footnote 8), whereas semantically its content is the proposition component of a polar question:41

\begin{equation}
\begin{array}{l}
\text{phon : yes} \\
\text{cat.head = adv\{+IC\} : syncat} \\
\text{dgb-params.max-qud : PolQuestion} \\
\text{cont = max-qud([]): Prop}
\end{array}
\end{equation}

\textbf{no} ‘No’ has a number of distinct uses, including an exophoric use (on which see (Cooper and Ginzburg 2015), where a treatment of negation in TTR is discussed) and a ‘pragmatic denial’ use, for which see (Tian and Ginzburg 2017). Here we provide a lexical entry that captures the basic fact about the most prototypical use of ‘no’ in dialogue—its content is always a negative proposition. This can arise either by negating a proposition, when MaxQUD is a positive polar question (e.g., A: Did Bo leave? B: No (= Bo did NOT leave)), or by affirming it when MaxQUD is a negative polar question (e.g., A: Bo didn’t leave? B: No (= Bo did not leave)):

\begin{equation}
\begin{array}{l}
\text{phon : no} \\
\text{cat.head = adv\{+IC\} : syncat} \\
\text{dgb-params.max-qud : PolQuestion} \\
\text{cont : NegProp} \\
\text{c1: (cont = maxqud([])) \lor (maxqud([]) \not\in NegProp \land cont = \neg maxqud([]))}
\end{array}
\end{equation}

\section*{7.4.2 Declarative Fragments}

Consider the declarative fragment (57-a):

\begin{equation}
\begin{array}{l}
\text{a. B: Four croissants.}
\end{array}
\end{equation}

40The rationale behind this proposal is that it makes ‘yes’ resemble its counterparts in other languages (see discussion above 2.1.2), as well as other adverbials in English (‘probably’, ‘possibly’) which have a use as a propositional lexeme; for English, one might make other decisions on this score, e.g., classifying ‘yes’ as an interjection.

41Recall that a polar question $p?$ is, in the semantics we propose, a constant function mapping any record r to the proposition p. Hence, in particular applying $p?$ to the empty record $[]$ yields p.

48
b. Context: A: What did you buy in the bakery?
 Content: I bought four croissants in the bakery.

c. Context: [A: smiles at B, who has become the next customer to be served at the bakery.]
 Content: I would like to buy four croissants.

d. Context: A: Dad bought four crescents.
 Content: You mean that Dad bought four croissants.

e. Declarative-fragment-clause:
 Cont = DGB.MaxQUD(u-frag.cont) : Prop

B’s utterance in (57-a) can receive a variety of contents, depending on the context in which it is uttered and the intonation contour it receives: it can be interpreted as a short answer, as in (57-b); it can be interpreted without any prior utterance, as in (57-c), though in such a case various paraphrases are possible, depending on the conversational genre;\(^{42}\) it can also be interpreted as the (‘metalinguistic’) correction in (57-d).

The different mechanisms underlying these resolutions can be uniformly described by the schema in (57-e). This indicates that the content of the construction type Declarative-fragment-clause arises by predicating the propositional function constituted by the maximal element of QUD of the content of the bare fragment utterance, a generalization of a rule proposed already in (Hausser and Zaefferer 1979). The particular content exhibited in (57-b) could arise because the issue ‘What did you buy in the bakery?’ is MaxQUD as a result of A’s query; (57-c) arises given that the issue ‘What does the current customer want to buy?’ is a characteristic issue of the BakeryShopping genre (as it is of many related genres); the content in (57-d) could arise if B decided not to ground A’s utterance, but using the parameter identification conversational rule (discussed in section 7.4.4) to initiate repair interaction, accommodates the issue ‘What did you mean by utterance ‘four crescents’?’ as MaxQUD.

We have also emphasized that different NSU constructions exhibit morphosyntactic and/or phonological parallelism with their antecedents. In other words, not only the combinatorial semantics of NSU constructions integrates information from the DGB, but this is also potentially true of the morphosyntactic and phonological specifications of such constructions.

\(^{42}\)See (Wittgenstein 1953; Clark 1996) for discussion and exemplification.
Here we utilize this to deal with connectivity: we specify that the fragment has to match the categorial specification of the FEC. In light of this, we can write a specification of \textit{decl-frag-cl} as in (58). Categorically the construction is sentential, as discussed in section 2.1.2; it has one dgb parameter—i.e. contextual parameter—the maximal element of QUD, whereas as just mentioned, its content arises by functional application of MaxQUD to the entity denoted by the fragment:

\begin{equation}
\text{(58)}
\end{equation}

\[
\begin{align*}
\text{cat} &= v : \text{syncat} \\
\text{dgb-params.max-quad} : &\left[\begin{array}{l}
q : \text{UnaryWhQuestion} \\
\text{fec} : \text{LocProp}
\end{array} \right] \\
\text{cont} &= \text{max-quad.q(hd-dtr.cont.x)} : \text{Prop}
\end{align*}
\]

\[
\begin{align*}
\text{hd-dtr} : &\left[\begin{array}{l}
\text{cat} = \text{max-quad.fec.cat} : \text{Syncat} \\
\text{cont} : [x : \text{IND}]
\end{array} \right]
\end{align*}
\]

7.4.3 Direct Sluicing

Direct sluices are analyzed in a similar fashion. In (Ginzburg and Sag 2000) declarative fragment clauses and sluices are unified as subtypes of a phrasal type dubbed \textit{hd-frag-ph}. This construction builds a verbally headed phrase from an NP or PP under the constraint that the context’s FEC is categorically identical to and co-indexed with it.\footnote{Of course, in languages where connectivity properties are not as strict as in English, this constraint can be weakened. See (Sag and Nykiel 2011; Nykiel 2013) for an example of how this can be done for sluicing in Polish. Similar analyses are possible for languages like French or Portuguese where a \textit{wh}-NP can have a PP correlate (cf., footnote 18). See also (Kim 2015) on sluicing in Korean.}

Three aspects distinguish a direct sluice, specified by the clause type \textit{sluice-int-cl} from a declarative fragment clause: the sluice is constructed from a \textit{wh}-phrase, the sluice clause denotes a question and, arguably, it has a distinct contextual background. What is the contextual background of a direct sluice? Ginzburg and Sag (2000) and Ginzburg (2012) argued that this involved the QUD-maximality of a quantified polar question (cf., footnote 15...}
and surrounding text). This seems to be accurate in most cases. There are, however, several cases where this is less persuasively so. An alternative, suggested by Ivan Sag (p.c.), is to assume that it is the corresponding \textit{wh}-question. This, however, requires a somewhat more ‘inferential’ view of QUD since in many cases there will not have been a prior utterance of a \textit{wh}-interrogative. Nonetheless, since it is clear that QUD needs to be updated by some restricted inferences in a number of cases, as we have already discussed, this is not a qualitative modification. Indeed, as will become clear from the discussion below, from a compositional semantics point of view, it makes little difference.

Assuming the view of \textit{wh}-phrase content sketched in section 7.3 and remaining agnostic for the moment as to the QUD-specification of a sluice’s context, we can explicate how the content of a sluice arises straightforwardly, using exactly the content of the \textit{wh}-phrase and MaxQUD. As summarized in (59-a), the sluice denotes a question (i.e., a function from records into propositions) whose domain is the type denoted by the \textit{wh}-phrase and whose range is that given by MaxQUD’s proposition where the \textit{wh}-phrase’s variable is substituted for that associated with the FEC (‘\(~\sim\)’ signifies ‘reduces to by β-conversion’).

\begin{align}
(59) \quad \text{a.} & \quad \text{sluice-int-cl.cont} = (\text{whP.rest})\text{MaxQUD.q.prop}[\text{fec}.x \mapsto \text{whP}.x] \\
\text{b.} & \quad \text{A: A student left. B: Who?} \\
\text{c.} & \quad [[\text{Who}]] = \\
& \quad (r : \text{Ind}) \\
& \quad \begin{cases}
 c_1 : \text{person}(x) \\
 c_2 : \text{student}(z) \\
 c_3 : \text{leave}(z)
\end{cases} \\
& \quad (z \mapsto x); \\
& \quad \sim \\
& \quad (r : \text{Ind}) \\
& \quad \begin{cases}
 x : \text{Ind} \\
 c_1 : \text{person}(x) \\
 c_2 : \text{student}(x) \\
 c_3 : \text{leave}(x)
\end{cases}
\end{align}

We note that this view extends to two tricky cases for deletion-based accounts.

First, exophoric cases like (32). In such cases awareness of the genre is what leads QUD to be updated (see Ginzburg (2012) for details.). The essential idea of that proposal is that a given genre can be characterized, in part, by a partially ordered set of questions, discussion of which constitutes its defining subject matter. At appropriate points these questions can be
accommodated into QUD without being uttered overtly. The way this account applies to declarative fragments was explained in the discussion of (57-c). This is what licenses exophoric sluices as in (60), illustrating the taxi-cab genre.

(60)
 a. Where does customer want to travel to? What is the price of the trip?

Second, incremental cases like (61-a), already discussed in section 4.3. Assuming an incremental view of semantic processing (Rieser and Schlangen 2011; Ginzburg et al. 2014b; Purver et al. 2011), the sluice in (61-a) is predicted to mean, immediately after it is uttered, ‘Who is that person (that has some as yet uninstantiated property)’, whereas ‘John? means ‘Is it John (that has some as yet uninstantiated property)?’. The incremental view merely needs the (incremental context) assumption that QUD can get updated word by word (rather than at turn boundaries), roughly as in (61-b):45

(61)
 a. Someone—John?/Any idea who?—took the kettle and didn’t return it.
 b. content: ∃x,P [Person(x) ∧ P(x)]; QUD: ?∃x,P [Person(x) ∧ P(x)]

7.4.4 Reprise Sluicing and Reprise Fragments

A key component of our analyses of elliptical reprise constructions are the questions accommodated into QUD as a consequence of the clarification interaction process triggered by incomplete understanding of the previous utterance, as described in section 7.3. With that in place, the existing grammar can then directly yield the requisite readings for reprise sluicing and for the confirmation readings of reprise fragments.

Assume the utterance to be clarified is (62-a). B uses the CCUR parameter identification to build a context as in (62-b):

(62)
 a. A: Did Bo leave? B: Bo? (= Did you mean Bo?)
 b. MAX-QUD = λxMean(A,u₀,x); FEC = A’s utterance ‘Bo’

44 More precisely, what gets accommodated are InfoStrucs, in other words question,utterance pairs that therefore include also the specification of a FEC. For some discussion as to how this relates to case specification, see (Ginzburg 2012), section 7.10.

45 For a detailed account of this see Ginzburg et al. 2017.
Given this, the analysis of the construction is illustrated in (63): the construction *decl-frag-cl* builds the proposition \(\text{Mean}(A,u_2,b) \); the construction *polarization* builds a polar question from this:

(63)

\[
S \left[\begin{array}{c}
\text{polarization} \\
\text{CONT} = \text{hd-dtr.cont} = \text{Mean}(A,u_2,b) : \text{Questn}
\end{array} \right]
\]

\[
S \left[\begin{array}{c}
\text{decl-frag-cl} \\
\text{maxqud} = \left[\begin{array}{c}
q = \lambda x \text{Mean}(A,u_2,x) : \text{Questn} \\
fec = p_2 : \text{LocProp}
\end{array} \right] \\
\text{hd-dtr} : \\
\text{cont} : [x : \text{Ind}] \\
\text{cat} = \text{fec.cat} : \text{syncat}
\end{array} \right] = \text{maxqud.q(hd-dtr.cont.x)}
\]

\[
\text{NP} \\
\text{BO}
\]

Intended content readings of RFs involve a complex mix of a *prima facie* non-transparent semantics and phonological parallelism. Independently of intended content readings, we need to capture the utterance anaphoricity of “quotative” utterances such as (64):

(64)

a. A: Bo is coming. B: Who do you mean ‘Bo’?

We assume the existence of a grammatical constraint allowing reference to a sub-utterance under phonological parallelism. (65) exemplifies one way of formulating such a constraint: the \text{PHON} value is type identical with the \text{PHON} value of an utterance identified with the FEC, whereas the content is stipulated to be the utterance event associated with the focus.
establishing constituent:46

(65) \[
\text{utt-anaph-ph} = \begin{bmatrix}
\text{phontype} = \text{max-qud.fec.sit-type.phon} : \text{Type} \\
\text{phontype} \\
\text{cat} : \text{syncat} \\
\text{max-qud} : \text{info-struc} \\
\text{cont} = \text{max-qud.fec.sit} : \text{Rec}
\end{bmatrix}
\]

With this in hand, we turn back to consider the issue of how intended content RFs arise grammatically. It is worth emphasizing that there is no way to bring about the desired content using \textit{decl-frag-cl}, the short-answer/reprise sluice phrasal type we have been appealing to above, regardless of whether we analyze the NP fragment as denoting its standard conventional content or alternatively as denoting an anaphoric element to the phonologically identical to-be-clarified sub-utterance. This is a prototypical instance of appeal to constructional meaning—a complex content that cannot be plausibly constructed using “standard combinatorial operations” (function application, unification etc.) from its constituents. Thus, one way of accommodating \textit{intended content} RF is to pos it a new phrasal type, \textit{qud-anaph-int-cl}. This will encapsulate the two idiosyncratic facets of such utterances, namely the MAX-QUD/CONTENT identity and the HD-DTR being an \textit{utt-anaph-ph}:

(66) \[
\text{qud-anaph-int-cl} = \begin{bmatrix}
\text{MAX-QUD} : \text{InfoStruc} \\
\text{cont} = \text{max-qud.q:Question} \\
\text{hd-dtr} : \text{utt-anaph-ph}
\end{bmatrix}
\]

Given this, we can offer the following analysis of (67):

(67) A: Is Bo here? B: Bo?

B lacks referent for ‘Bo’; uses \textbf{parameter identification} to update MaxQUD accordingly:

\footnote{Postulating such an ambiguity goes back to Frege and Quine, who suggested that phrases within quotative operators denoted the string itself. (65) makes one simplifying assumption: identifying the PHON value of the focus establishing constituent with that of the utterance anaphoric phrase. In practice this should only be the segmental phonological value.}
Using qud-anaph-int-cl yields:

Using qud-anaph-int-cl yields:

7.4.5 Disfluency

Disfluencies are viewed as a performance phenomenon in most formal grammatical treatments.47 Ginzburg et al. (2014b) provide extensive argumentation for the need to integrate disfluencies in the competence grammar, demonstrating that they participate in semantic and pragmatic processes like anaphora, implicature, and discourse marker content, as well as being subject to cross-linguistic variation and also exhibiting some universals. Ginzburg et al. (2014b) develop their account of disfluencies in KoS by extending the account mentioned in

47 Though not by psycholinguists, see e.g., Levelt (1983); Clark and FoxTree (2002).
previous sections of the coherence and realization of clarification requests: as the utterance unfolds incrementally there potentially arise questions about what has happened so far (e.g., *what did the speaker mean with sub-utterance u₁?*) or what is still to come (e.g., *what word does the speaker mean to utter after sub-utterance u₂?*). These can be accommodated into the context if either uncertainty about the correctness of a sub-utterance arises or the speaker has planning or realizational problems. Thus, the monitoring and update/clarification cycle is modified to happen at the end of each word utterance event, and in case of the need for repair, a repair question gets accommodated into QUD. In this way, the coherence of “spelled out” self-repairs such as (70-a) can be explained, but also of elliptical self-repairs such as (70-b). The latter is analyzed as a declarative fragment clause (see section 7.4.2), where the antecedent question is the accommodated “what did A mean by ‘earphones’?” with the utterance ‘earphones’ being the FEC:

(70) a. Take that book in I mean from the shelf.

b. Have you seen Mark’s erm earphones? Headphones. (BNC, KP0 369-370)

7.5 A worked example

As exemplification of what we have done in this section, we return to the example we introduced earlier, (46), where the numbering henceforth relates to the sequence of utterances in that example. Our illustration involves a sequence of dialogue gameboards that arise sequentially via updates triggered by conversational rules. We will abuse notation somewhat and notate by ‘:=’ cases where a field gets assigned a new value. Another point to note is that in some cases we consider the dialogue from A’s point of view (in which case we have fields such as ‘A.LatestMove’); in other cases from B’s point of view (in which case we have fields like ‘B.QUD’). This is an inevitable consequence of the fact that in dialogue there is not always a context that is identical for the conversational participants.

(1) **A: Who visited Bo?**

Initial query: posed by A; updates his DGB accordingly with the question expressed by the utterance in (1).
(2) **B: Bo?**

A’s utterance cannot be grounded by B, hence it remains in Pending. Here A’s utterance (1) is assigned to the label ‘sit’, whereas the sign associated with the form ‘Who visited Bo’, which we denote as ‘WVB’ is assigned to the label ‘sit-type’. B accommodates a clarification question (‘Who did A mean by the utterance ‘Bo’?’), thereby licensing a clarification question expressed as a reprise (the construction type *quad-anaph-int-cl*).

\[
\begin{align*}
B.\text{Pending} & = \langle \\
& \begin{cases}
\text{sit} = (1) \\
\text{sit-type} = \text{WVB}
\end{cases}
\rangle \\
B.\text{QUD} & = \langle \\
& \begin{cases}
\lambda x \text{Visit}(x,b) \\
\text{who} = \text{Bo}
\end{cases}
\rangle
\end{align*}
\]

(3) **A: My cousin.**

B’s question receives an answer in the form of a short answer, licensed by the QUD above (the construction type *decl-frag-cl*); ‘Bo is A’s cousin’ is added to FACTS and the initial question is now MaxQUD for B as well:

\[
\begin{align*}
B.\text{LatestMove} & := \text{Assert}(A,B, p_1) \\
p_1 & = \text{Cousins}(A,b) \\
B.\text{QUD} & = \langle \\
& \begin{cases}
p_1, \\
\lambda x \text{Visit}(x,b) \\
\text{who} = \text{Bo}
\end{cases}
\rangle
\end{align*}
\]
(4) **B: Jack did.**

B can now ground the utterance (1) with the referent she was provided in (3): the question from (1) has become MaxQUD. This licenses an utterance using the Subj-Choice VPE construction (cf. section 4.1, $\lambda x \text{Visit}(x,b)$ is the salient property). B asserts p_2, hence $p_2?$ becomes MaxQUD.

\[
\begin{align*}
A.DGB.\text{LatestMove} & := \text{Assert}(B,A,p_2) \\
p_2 & = \text{Visit}(j,b) \\
A.\text{QU}D & := \left\{ \begin{array}{l}
p_2?, \\
fec = \text{Who} \\
q = \lambda x \text{Visit}(x,b)
\end{array} \right.
\end{align*}
\]

(5) **A: Who else?**

A deduces from B’s utterance the question $p_3?$ = *whether someone other than Jack visited Bo*. The info-struct $\left[\begin{array}{l} q = p_3? \\
fec = \text{Jack} \end{array} \right]$ licenses the sluice (the construction type slu-int-cl):

\[
\begin{align*}
\text{FACTS} & := \{ \text{Cousins}(A,b), \text{Visit}(j,b) \} \\
A.\text{QU}D & := \left\{ \begin{array}{l}
q = p_3? \\
fec = \text{Jack}
\end{array} \right.
\end{align*}
\]

$\sim\rightarrow$

\[
\begin{align*}
A.\text{LatestMove} & := \text{Ask}(A,B,q_2) \\
A.\text{QU}D & := \left\{ \begin{array}{l}
q = q_2, \\
fec = \text{Who else} \\
q = p_3?, \\
fec = \text{Jack}
\end{array} \right.
\end{align*}
\]

(6) **B: No one.**

A’s question receives an answer in the form of a short answer, licensed by the QU above:
B.DGB.LatestMove := Assert(B,A,p\textsubscript{4})
\[p\textsubscript{4} = \neg\exists x, x \neq j, \text{Visit}(x,b) \]
B.QUD := \langle p\textsubscript{4}?, \begin{bmatrix} q=q\textsubscript{2} \\ fec=\text{Who else} \end{bmatrix}, \begin{bmatrix} q=p\textsubscript{3} \\ fec=\text{Jack} \end{bmatrix} \rangle
FACTS := \{ \text{Cousins}(A,b), \text{Visit}(j,b) \}

(7) a. \textbf{A: Didn’t Bill} . . .

A does not accept B’s assertion and using the question \(q_2 \) to license VPE48. In mid-utterance (i.e. with Pending consisting of the initial segment ‘Didn’t Bill’) A realises that ‘Bill’ was not what she meant to utter. She accommodates the issue ‘Who did A mean to utter with ‘Bill’?’ as MaxQUD:

\[\text{A.Pending} := \begin{bmatrix} \text{sit} = (7a) \\ \text{sit-type} = \text{Didn’t B} \end{bmatrix} \]
\[\text{A.QUD} := \langle p\textsubscript{4}?, \begin{bmatrix} q=\lambda x \text{Mean}(A,’Bill’,x) \\ fec=\text{Bill} \end{bmatrix}, \begin{bmatrix} q=q\textsubscript{2} \\ fec=\text{Who else} \end{bmatrix}, \begin{bmatrix} q=p\textsubscript{3} \\ fec=\text{Jack} \end{bmatrix} \rangle \]

b. \ldots \textbf{I mean Mary}?\ldots

A self-corrects, addressing the issue of ‘Who did A mean to utter with ‘Bill’?’, which leads to her intended utterance—a polar question about Mary:

\[\text{A.LatestMove} := \text{Assert}(A,B,p\textsubscript{5}) \]
\[p\textsubscript{5} = \text{Mean}(A,’Bill’,m) \]
\[\text{A.QUD} := \langle p\textsubscript{5}?, \begin{bmatrix} q=\lambda x \text{Mean}(A,’Bill’,x) \\ fec=\text{Bill} \end{bmatrix}, \begin{bmatrix} q=q\textsubscript{2} \\ fec=\text{Who else} \end{bmatrix}, \begin{bmatrix} q=p\textsubscript{3} \\ fec=\text{Jack} \end{bmatrix} \rangle \]

\[48 \text{ Why is } q_2 \text{ MaxQUD? In KoS QUD is not taken to be a stack, but rather a partially ordered set. Ginzburg (2012), motivated in part by from multi-party dialogue, proposed that when a question } q \text{ is pushed onto QUD it doesn’t subsume all existing questions in QUD, but rather only those on which } q \text{ does not depend. Hence, Wh-questions do not get outranked by polar questions which are their sub-questions.} \]
A.LatestMove : = Ask(A,B,p_6?)

\[p_6 = \neg \text{Visit(m,b)} \]

FACTS := \{\text{Mean(A,’Bill’,m), Cousins(A,b), Visit(j,b)}\}

\sim \rightarrow

A.QUD : = \langle p_6?, [q=q_2,fec=\text{Who else}][q=p_3?,fec=\text{Jack}] \rangle

(8) B: No.

B refutes A’s hypothesis, using ‘No’, which reaffirms MaxQUD: the negative proposition \(p_6 \):

\[
\begin{align*}
B.\text{LatestMove} : & = \text{Assert(B,A,p_6)} \\
p_6 & = \neg \text{Visit(m,b)} \\
\text{FACTS} & := \{\text{Mean(A,’Bill’,m), Cousins(A,b), Visit(j,b)}\} \\
A.\text{QUD} & : = \langle p_6?, [q=q_2,fec=\text{Who else}][q=p_3?,fec=\text{Jack}] \rangle
\end{align*}
\]

References

Arnold, Doug and Robert D. Borsley. 2010. Auxiliary-stranding relative clauses. In Stefan

Guida, Flore. 2013. Les phrases sans verbes. Université Paris-Diderot Ms.

Miller, Philip. 1990. Pseudogapping and *Do so* substitution. In *Papers from the 26th Regional Meeting of the Chicago Linguistic Society*, 293–305. Chicago, IL.

Miller, Philip and Barbara Hemforth. 2014. Verb phrase ellipsis with nominal antecedents.
Ms. Université Paris Diderot.

Miller, Philip and Geoffrey K. Pullum. 2014. Exophoric VP ellipsis. In Philip Hofmeister and
Elisabeth Norcliffe, eds., The Core and the Periphery: Data-driven Perspectives on Syntax

Miller, Philip and Ivan Sag. 1997. French clitic movement without clitics or movement.

in Linguistics: papers in honour of Henry and Rene Kahane. UIP.

Mouret, François. 2006. A phrase structure approach to argument cluster coordination. In
Stefan Müller, ed., Proceedings of the 13th International Conference on Head-Driven
Publications.

Diderot, Paris.

Müller, Stefan. 2015a. Grammatical Theory: From Transformational Grammar to
Constraint-Based Approaches. Berlin: Language Science Press. URL

Müller, Stefan. 2015b. HPSG—a synopsis. In Tibor Kiss and Artemis Alexiadou, eds.,
Gruyter.

Head-Driven Grammar. In Jane Fee and Katherine Hunt, eds., Proceedings of the 8th West
Coast Conference on Formal Linguistics, 276–288. CSLI Publications.

Nerbonne, John, Masayo Iida, and William Ladusaw. 1990. Semantics of common noun

